2

I have some problems with the following task:
Find digits x and y such that the number $\overline{25xy5}$ is divisible by 3 and 7.

So far, I have come up with this solution:

$$ \begin{cases} 2+5+x+y+5=3p,\ p \in\mathbb{Z+} \\ 25xy-10=7q, \ q \in\mathbb{Z+} \end{cases} $$

$$ \begin{cases} 2+5+x+y+5=3p,\ p \in\mathbb{Z+} \\ 2500+10x+y-10=7q, \ q \in\mathbb{Z+} \end{cases} $$

$$ \begin{cases} x+y=3p-12,\ p \in\mathbb{Z+} \\ 10x+y=7q-2490, \ q \in\mathbb{Z+} \end{cases} $$

And the problem is that I don't know if I am on the right way to the solution and what to do with the parameters p and q.

J. W. Tanner
  • 60,406

1 Answers1

3

We have $$\overline{25xy5} =25005 + \overline{xy0}\underset7\equiv 1+10\cdot \overline{xy}\underset7\equiv 1+3\cdot \overline{xy}.$$

Hence $$1+3\cdot \overline{xy} \underset7\equiv 0,$$

or $$\overline{xy}\underset7\equiv 2.$$

Also we have that $$2+5+x+y+5 \underset3\equiv 0,$$

so $$x+y \underset3\equiv 0.$$

From here you just probably try all numbers of the form $7k+2$ and check if sum of two digits is divisible by $3$. From $02$, $09$, $16$, $23$, $30$, $37$, $44$, $51$, $58$, $65$, $72$, $79$, $86$, $93$ only $$09, 30, 51, 72, 93$$ are good.

Aig
  • 4,178