All similar proofs I could find show that $(1+1/n)^n$ is increasing for positive integers values of $n$ only, or show that the derivative of $(1+1/x)^x$ is positive for all $x \in \mathbb{R}_{>0}$.
I'm looking for a proof that $x<y \implies (1+1/x)^x < (1+1/y)^y$ for all $x,y \in \mathbb{R}_{>0}$ that doesn't use the derivative of $a^x$ nor the derivative of $\log_a (x)$
My attempt so far:
Let $x,y \in \mathbb{R}_{>0}$ such that $x<y$. Let
$$ \begin{align} J&= \frac {\left(1+\frac{1}{y}\right)^y}{\left( 1+ \frac{1}{x} \right)^x}\\ &= \frac {(\frac{y+1}{y})^x(1+\frac{1}{y})^{y-x}}{(\frac{x+1}{x} )^x}\\ &= {(\frac{xy+x}{xy+y})^x(1+\frac{1}{y})^{y-x}} \\ &= {\left(1 - \frac{y-x}{xy+y}\right)^x\left(1+\frac{1}{y}\right)^{y-x}} \end{align} $$
Showing that $\left(1 - \frac{y-x}{xy+y}\right)^x > \frac{1}{\left(1+\frac{1}{y}\right)^{y-x}}$ is what I'm missing