Andrew's comment is a nice proof. Here is another one.
More generally, if $R$ is a commutative ring with $1$, and $A, B$ are ideals s.t. $A+B=R$, then $A^m+B^n=R$ for all $m,n\in\mathbb{Z}_+$.
(Then the original question comes from applying this conclusion to $Aa$, $Ab$, $m=n=k$.)
To see this, we first prove $A+B^n=R$ or all $n\in\mathbb{Z}_+$.
This is because
\begin{equation*}
R=R^n=(A+B)^n\subseteqq A+B^n.
\end{equation*}
(To see why $\subseteqq$ holds, note that an element in $(A+B)^n$ must be a finite sum of terms like $(a_1+b_1)\cdots(a_n+b_n)\in b_1b_2\cdots b_n+A\subseteq B^n+A$.)
Since $A+B^n=R$ provided $A+B=R$, the substitution $B^n\leftarrow A$, $B\leftarrow A$, $n\leftarrow m$ implies
$A^m+B^n=R$.