Prove that if $F(x_1, x_2, \ldots, x_n) = 0$, where $F$ is a polynomial with integral coefficients, has a solution in integers, then the congruence $F(x_1, x_2, \ldots, x_n) \equiv 0 \pmod{m}$ is solvable for any value of modulus $m$.
I am not sure how to prove this.
My attempt: Let $F(x_1, x_2, \ldots, x_n) = \sum_{i_1, i_2, \ldots, i_n} a_{i_1, i_2, \ldots, i_n} x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n}$ be the polynomial with integer coefficients. Suppose there exists a solution $(a_1, a_2, \ldots, a_n)$ such that $F(a_1, a_2, \ldots, a_n) = 0$.
Consider the congruences:
$ x_1 \equiv a_1 \pmod{m} $
$ x_2 \equiv a_2 \pmod{m} $
$ \vdots $
$ x_n \equiv a_n \pmod{m} $
By the definition of congruence, we have $x_i = a_i + m \cdot t_i$ for some integers $t_i$. Substitute these expressions into $F(x_1, x_2, \ldots, x_n)$:
$$ F(a_1 + m \cdot t_1, a_2 + m \cdot t_2, \ldots, a_n + m \cdot t_n) = 0 $$ Is this correct so far? Not sure what to do next.