Personally, I like the following presentation for $D_{2n}$:
$$\langle x,y\mid x^n=y^2=(xy)^2=1\rangle$$ Now assume that the following presentation is given:
$$G=\langle x,y\mid x^2=y^2=(xy)^n=1\rangle$$ So we have:
$$
\begin{align*}
G=\langle x,y&\mid x^2=y^2=(xy)^n=1\rangle\\
\cong
\langle x,y,a&\mid x^2=y^2=(xy)^n=1,a=xy\rangle\\
\cong
\langle x,y,a&\mid x^2=y^2=(xy)^n=a^n=1,a=xy\rangle\\
\cong
\langle x,y,a&\mid x^2=y^2=a^n=1,a=xy\rangle\\
\cong
\langle x,y,a&\mid x^2=y^2=a^n=1,a=xy,(ay^{-1})^2=1\rangle\\
\cong
\langle x,y,a&\mid y^2=a^n=1,a=xy,(ay^{-1})^2=1\rangle\\
\cong
\langle y,a&\mid y^2=a^n=1,(ay^{-1})^2=1\rangle\\
\cong
\langle y,a,b&\mid y^2=a^n=1,(ay^{-1})^2=1,b=y^{-1}\rangle\\
\cong
\langle y,a,b&\mid y^2=a^n=1,(ay^{-1})^2=1,b=y^{-1},b^2=1\rangle\\
\cong
\langle y,a,b&\mid a^n=1,(ay^{-1})^2=1,b=y^{-1},b^2=1\rangle\\
\cong
\langle y,a,b&\mid a^n=b^2=(ab)^2=(ay^{-1})^2=1,b=y^{-1}\rangle\\
\cong
\langle y,a,b&\mid a^n=b^2=(ab)^2=1,b=y^{-1}\rangle\\
\cong
\langle a,b&\mid a^n=b^2=(ab)^2=1\rangle
\end{align*}$$
Which is $D_{2n}$.