Online I have found the definition:
Taylor's theorem $\quad$ Multivariate case
$$ \begin{align*} f(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T(\mathbf{x}-\mathbf{a}) + \frac{1}{2}(\mathbf{x}-\mathbf{a})^T \nabla^2 f(\mathbf{a})(\mathbf{x}-\mathbf{a}) + R_2(\mathbf{x}) \end{align*} $$
where $R_2(\mathbf{x}) = o(||\mathbf{x}-\mathbf{a}||^2)$ as $||\mathbf{x}-\mathbf{a}|| \to 0$.
What is the norm $\|\cdot\|$ used here, when defining the remainder error. Is it the euclidean norm?