$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\int_{0}^{\infty}\sin\pars{1 \over x^{2}}\ln\pars{x}\dd x}
\sr{x\ =\ t^{-1/4}}{=}
-\,{1 \over 16}\int_{0}^{\infty}t^{-3/4}\,\ln\pars{t}{\sin\pars{\root{t}} \over \root{t}}\dd t
\\[5mm] = & \
\left.-\,{1 \over 16}\partiald{}{\nu}\int_{0}^{\infty}t^{\pars{\nu\ +\ 1/4}\ -\ 1}\,\,\,\,\,{\sin\pars{\root{t}} \over \root{t}}\dd t\right\vert_{\nu\ =\ 0}
\\[5mm] & \mbox{However,}\ {\sin\pars{\root{t}} \over \root{t}} =
\sum_{n = 0}^{\infty}{\Gamma\pars{1 + n} \over \Gamma\pars{2 + 2n}}{\pars{-t}^{n} \over n!}\quad \mbox{such that}
\\[5mm] & \color{#44f}{\int_{0}^{\infty}\sin\pars{1 \over x^{2}}\ln\pars{x}\dd x} = \left.-\,{1 \over 16}\partiald{}{\nu}\overbrace{{\Gamma\pars{\nu + {1 \over 4}}{\Gamma\pars{3/4 - \nu} \over \Gamma\pars{3/2 - 2\nu}}}}^{\substack{\ds{Ramanujan's\ Master}\\ \ds{Theorem}}}\right\vert_{\,\nu\ =\ 0}
\\[5mm] = & \
\left.-\,{\pi \over 16}\partiald{}{\nu}{1 \over \sin\pars{\pi\bracks{\nu + 1/4}}\Gamma\pars{3/2 - 2\nu}}\right\vert_{\,\nu\ =\ 0}
\\[5mm] = & \ \bbx{\color{#44f}{\root{\pi \over 2}\bracks{{\gamma \over 2} + {\pi \over 4} + \ln\pars{2} - 1}}} \approx 0.9615
\end{align}
After substituting $\frac{1}{x^2} \to x$.
– Zacky Feb 24 '24 at 17:27