How to evaluate $$\int_0^{\infty } \left(\frac{1}{(x+1)^2 \log (x+1)}-\frac{\log (x+1) \tan ^{-1}(x)}{x^3}\right) \, dx = G - \gamma + \frac{1}{4} \pi \log 2 - \frac{3}{2}.$$
I made some progress. Integrating the second term by parts shows that negative of the integral equals $$ -I = 1/2 + 1/2 \int_0^{\infty} \,dx \frac{1}{x^2} \left[ \frac{ \ln(1+x)}{1+x^2} + \frac{ \tan^{-1} x }{1+x} \right] - \frac{1}{(1+x)^2 \ln(1+x)}. $$ Integrating the arctan term by parts and using the partial fraction expansion of $\frac{1}{x^2(1+x)}$ yields $$ -I = 1 - G/2 - \frac{\pi}{8} \ln 2 + \int_0^{\infty} \,dx \frac{1}{2(1+x^2)} \left[\frac{\ln(1+x)}{x^2} + \frac{1}{x} \right] - \frac{1}{(1+x)^2 \ln (1+x)}. $$ Here I used the integrals $$ \int_0^{\infty} \,dx \frac{\ln x}{1+x^2} = 0$$ and $$ \int_0^{\infty} \,dx \frac{\ln (1+x)}{1+x^2} = G + \frac{\pi}{4} \ln 2.$$ The latter still requires proof. The value of the integral follows immediately if we can show that $$ \int_0^{\infty} \,dx \frac{1}{x} \left[ \frac{1}{1+x^2} - e^{-x} \right] = \gamma $$ [Note that I made a substitution in the second term] and $$ \int_0^{\infty} \,dx\left[ \frac{\ln(1+x)}{x^2(1+x^2)} - \frac{1}{(1+x)^2 \ln (1+x)} \right] = 1 + \gamma - G - \frac{\pi}{4} \ln 2, $$ which are beautiful independent results. Can someone continue from here?