How to evaluate the following integral/ $$\int_{0}^{\infty} \, \frac{x^\alpha \log^n{(x^\beta)}}{k^m+x^m}\, dx $$, $\alpha, \beta, m, n$ are real and $k$ is a positive integer.
For the case where $\beta=1$ and $m=2$, we can consider the following integral: $$ \begin{aligned} I(\alpha, k) & =\int_0^{\infty} \frac{x^\alpha}{k^2+x^2} d x \\ & =\frac{k^{\alpha-1}}{2} \int_0^{\infty} \frac{t^{(\alpha-1) / 2}}{1+t} d t \\ & =\frac{k^{\alpha-1}}{2} \mathrm{~B}\left(\frac{1+\alpha}{2}, \frac{1-\alpha}{2}\right) \\ & =\frac{k^{\alpha-1}}{2} \frac{\pi}{\cos \left(\frac{\pi}{2} a\right)} \end{aligned} $$
Differentiating $I(\alpha, k)$ with respect to $\alpha$ yields: $$ \begin{align*} \int_{0}^{\infty} \, \frac{x^\alpha \log^n{x}}{k^2+x^2}\, dx &= \frac{\partial^{n} }{\partial a^n} \left(\frac{k^{\alpha-1}}{2}\, \frac{\pi}{\cos{\displaystyle \left(\frac{\pi}{2}\alpha\right)}}\right) \end{align*} $$(based on this answer).
Are there any other methods to evaluate the general integral? Thank you!