I recently learned $\int^{\infty}_{-\infty}\sin(e^x)dx$ can be solved like this:
$$\int_{-\infty}^{\infty}\sin(e^x)dx$$
$$\int^{\infty}_{-\infty}\frac{\sin(e^x)}{e^x}e^xdx$$
$$\int^{\infty}_{0}\frac{\sin(u)}{u}du$$
$$\operatorname{Si}(e^x)|^\infty_{0}=\frac{\pi}{2}$$
It inspired me to come up with this integral which wolfram alpha approximates to $-0.98771815$.
I employed a similar strategy on my integral:
$$\int_{-\infty}^{\infty}\sin(xe^x)dx=\int_{-\infty}^{\infty}\frac{\sin(xe^x)}{xe^x+e^x}(xe^x+e^x)dx=\int_{0}^{\infty}\frac{\sin(u)}{u+e^{W(u)}}du\\=\int_{0}^{\infty}\frac{\sin(u)}{u+\frac{u}{W(u)}}du=\int_{0}^{\infty}\frac{\sin(u)W(u)}{u(1+W(u))}du$$
I don't know how to solve this so I tried a different substitution:
$$\int_{-\infty}^{\infty}\sin(xe^x)dx=\int_{-\infty}^{\infty}\frac{\sin(xe^x)}{e^x}e^xdx=\int_{0}^{\infty}\frac{\sin(\ln(u)u)}{u}du$$
I feel like I am close here but I don't know how to progress.