I'm trying to find the following limit (without L'Hopital, not there yet):
$$\lim_{x \rightarrow 0} \frac{x -\sin x}{x (1 - \cos x)}$$
Tanking into account that:
$$\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$$
and
$$\lim_{x \rightarrow 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$$
If I divide by x I get:
$$\lim_{x \rightarrow 0} \frac{x -\sin x}{x (1 - \cos x)} = \lim_{x \rightarrow 0} \frac{1 - \frac{\sin x}{x}}{(1 - \cos x)}$$
And I still get a $\frac{0}{0}$ indeterminate limit. I have also tried dividing numerator by $\frac{x^2}{2}$.
$$\lim_{x \rightarrow 0} \frac{x -\sin x}{x (1 - \cos x)} = \lim_{x \rightarrow 0} \frac{1 - \frac{\sin x}{x}}{ \frac{x^2}{2} \frac{1 - \cos x}{\frac{x^2}{2}}}$$
But I still get a $\frac{0}{0}$ indeterminate limit. How can I solve this limit problem without L'Hopital?