As title . I tried to work it out $$\int_0^1 \frac{1-2x}{x^2-x+1} \ln (1-x) dx$$
But could not find a solution.
Wolfram Alpha gives a solution using $Li(c)$ , but I’m not familiar with the special function, couldn’t understand it.
As title . I tried to work it out $$\int_0^1 \frac{1-2x}{x^2-x+1} \ln (1-x) dx$$
But could not find a solution.
Wolfram Alpha gives a solution using $Li(c)$ , but I’m not familiar with the special function, couldn’t understand it.
\begin{align} &\int_0^1 \frac{1-2x}{x^2-x+1} \ln (1-x)\overset{ibp}{ dx}\\ =& -\int_0^1\frac{\ln(1-x+x^2)}{1-x}\overset{x\to 1-x}{dx} =-\int_0^1\frac{\ln(1-x+x^2)}{x}{dx}\\ =& \int_0^1\frac{\ln(1+x)}{x}{dx}-\int_0^1\frac{\ln(1+x^3)}{x}\overset{x^3\to x}{dx}\\ =& \ \frac23\int_0^1\frac{\ln(1+x)}{x}{dx}=\frac{\pi^2}{18} \end{align} where $\int_0^1\frac{\ln(1+x)}{x}{dx}= \frac{\pi^2}{12}$.
If you cannot use polylogarithms yet, use a series expansion around $x=1$
$$\frac{1-2 x}{x^2-x+1}= -\sum_{n=0}^\infty \left(\sqrt{3} \sin \left(\frac{2 \pi n}{3}\right)+\cos \left(\frac{2 \pi n}{3}\right)\right)\,(x-1)^n$$ Using one integration by parts $$\int (x-1)^n \log(1-x)\,dx=\frac{(x-1)^{n+1} ((n+1) \log (1-x)-1)}{(n+1)^2}$$ $$\int_0^1 (x-1)^n \log(1-x)\,dx=-\frac{(-1)^n}{(n+1)^2}$$ which makes that your integral is $$\int_0^1 \frac{1-2x}{x^2-x+1} \log (1-x)\, dx=\sum_{n=0}^\infty (-1)^n \, \frac{\sqrt{3} \sin \left(\frac{2 \pi n}{3}\right)+\cos \left(\frac{2 \pi n}{3}\right) } {(n+1)^2}$$ Using the fist $100$ terms, you get $0.548211$ while the exact solution is $0.548311$