I attempting to solve $x^{55} \equiv 33 \pmod{257}$. In using Fermat's Little Theorem and the observation that $1 = 55 \cdot (-121) + 256\cdot 26,$ I get \begin{align*} x^{55} \equiv 33 \pmod{257} &\Rightarrow x^{55 \cdot (-121)} \equiv 33^{-121} \pmod{257} \\ & \Rightarrow x (x^{256})^{-26} \equiv 33^{-121} \pmod{257} \\ &\Rightarrow x \equiv 33^{-121} \pmod{257} . \end{align*}
However, I must still compute $33^{-1} \pmod{257}$ by solving \begin{align} 33x \equiv 1 \pmod{257}, \tag{1} \end{align} with which I am having difficulty without a calculator. In using WolframAlpha, I have obtained $x \equiv 148 \pmod{257}$ and so must compute \begin{align} 148^{121} \pmod{257}, \tag{2} \end{align}with which I am again having difficulty evaluating. Are there any tips to compute these last two steps $(1)$ and $(2)$?