Pf:
Let $x > 0$. By the Archimedean property, $\exists M \in \mathbb{Z}^{+}$ s.t. $\frac{1}{x} < M$.
Likewise, $\exists n \in \mathbb{Z}^{+}$ s.t. $x < n$.
Let $N = n + M$. Because $n, M > 0 \Rightarrow n + M > 0$ and $(n + M) \in \mathbb{Z}$ because the integers are closed under addition. Thus, $N \in \mathbb{Z}^{+}$.
We have that $$x < n < N$$ and $$\frac{1}{x} < M < N \Rightarrow \frac{1}{N} < \frac{1}{M} < x.$$ Thus, $$\frac{1}{N} < \frac{1}{M} < x < n < N$$ $$\Rightarrow \frac{1}{N} < x < N.$$ Because $N \in \mathbb{Z}^{+}$, we conclude that $\exists N \in \mathbb{Z}^{+}$ s.t. $\frac{1}{N} < x < N$.