For $2$D random walks, Lord Rayleigh proved that for large number of steps, $N$, the PDF of the final position of each walk distributed around some initial point follows the Rayleigh distribution:
$$f_R(r)=\frac{2r}{N}\exp\left(-\frac{r^2}{N}\right)$$
Since it is normalized only in the radius coordinate, we’ll have to normalize it for the angle too if we want to work in polar coordinates:
$$\int_0^{2\pi}\int_0^\infty \frac{2r}{N}\exp\left(-\frac{r^2}{N}\right) r\text dr\text d\theta=\pi\sqrt{\pi N}$$
Therefore, we are looking at
$$f_{R;\Theta}(r;\theta)= \frac{2r}{(\pi N)^{\frac{3}{2}}}\exp\left(-\frac{r^2}{N}\right). $$
Since the initial point is on the perimeter of the disk of radius $\rho$ (you said $r$, but $r$ and $R$ are already taken), without loss of generality and in view that the disk is polar-symmetric, we can center the coordinate system at, for convenience, $(x,y)=(-\rho,0)$. Thus, the distribution will be centered there and the region of return will be a disk to the right of the origin. In brief, the initial point would be at the origin and the region would be described like $r\in(0,2\rho\cos\theta)\ \wedge\ \theta\in(-\pi/2,\pi/2)$.
Finally, we calculate said probability of returning:
$$
\begin{aligned}
\mathsf{P}&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{2\rho\cos\theta} \frac{2r^2}{(\pi N)^{\frac{3}{2}}}\exp\left(-\frac{r^2}{N}\right)\text dr\text d\theta\\
&\overset{r^2/N<\!<1}{=} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{2\rho\cos\theta} \frac{2r^2}{(\pi N)^{\frac{3}{2}}}\sum_{k=0}^\infty\frac{1}{k!}\left(-\frac{r^2}{N}\right)^k\text dr\text d\theta\\
&= \frac{2}{(\pi N)^{\frac{3}{2}}}\sum_{k=0}^\infty\frac{(-1)^k}{k!N^k}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{2\rho\cos\theta}r^{2k+2}\text dr\text d\theta\\
&= \frac{2}{(\pi N)^{\frac{3}{2}}}\sum_{k=0}^\infty\frac{(-1)^k2^{2k+3}\rho^{2k+3}}{k!N^k(2k+3)}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos\theta)^{2k+3}\text d\theta\\
&= \frac{2}{(\pi N)^{\frac{3}{2}}}\sum_{k=0}^\infty\frac{(-1)^k2^{2k+3}\rho^{2k+3}}{k!N^k(2k+3)}\int_{0}^{\pi}(\sin\theta)^{2k+3}\text d\theta
\end{aligned}
$$
Knowing that the integral satisfies $I(n)=\frac{n-1}{n}I(n-2)$ and subtituting $n=2k+3$, the integral is $$I(2k+3)=\frac{2k+2}{2k+3}I(2k+1)=\underbrace{2}_{I(1)}\frac{(2k+2)!!}{(2k+3)!!}$$.
At last we get
$$\mathsf{P}(\rho)=\sum_{k=0}^\infty\frac{(-1)^k2^{2k+5}}{k!\pi^{\frac{3}{2}}N^{k+\frac{3}{2}}(2k+3)}\frac{(2k+2)!!}{(2k+3)!!}\rho^{2k+3}, \forall\rho $$