I want to prove that if $f(x)$ has second order derivative than it should given by: $$f''(x)=\lim_{h \to 0} \frac{f(x+2h)-2f(x+h)+f(x)}{h^2}$$ but I can not prove this. So I try to write that definition of the derivative:
\begin{equation}\label{eq1} f''(x)= \lim_{h\to0} \frac{f'(x+h)-f'(x)}{h}\quad(1) \end{equation}
From here I expand: $$f'(x+h)= \lim_{c\to0} \frac{f(x+h+c)-f(x+h)}{c}$$ and similarly for $f'(x)$ in $(1)$. So then I substitute it into $(1)$:
\begin{align} f''(x)=\lim_{h\to0} \frac{\lim_{c\to0} \frac{f(x+h+c)-f(x+h)}{c}-\lim_{c\to0} \frac{f(x+c)-f(x)}{c}}{h} \\= \lim_{h\to0} \frac{\lim_{c\to0} [\frac{f(x+h+c)-f(x+h)}{c}- \frac{f(x+c)-f(x)}{c}]}{h} \\= \lim_{h\to0} \frac{\lim_{c\to0} [\frac{f(x+h+c)-f(x+h)- f(x+c)-f(x)}{c}]}{h} \end{align} What I am trying to do is to prove is that $$\lim_{h\to0} \frac{\lim_{c\to0} [\frac{f(x+h+c)-f(x+h)- f(x+c)-f(x)}{c}]}{h} = \lim_{h \to 0} \frac{f(x+2h)-2f(x+h)+f(x)}{h^2}$$ but I could not do it.