6

I was investigating patterns in sums of Dirichlet beta function and I found out that if $$a_n=\beta(4n+1)-\beta(4n+3) $$ then the associated series seems to approach a number: $$\sum_{n=0}^\infty a_n=\beta(1)-\beta(3)+\beta(5)-\beta(7)+\beta(9)-\beta(11)+\dots=-0.18698991\dots $$ So my question is: what is the value of this series?

I tried to use the integral representation of $\beta$: $$\beta(s)=\frac{1}{\Gamma(s)}\int_0^\infty\frac{x^{s-1}e^{-x}}{1+e^{-2x}}dx $$ but then I couldn't interchange the sum and integral, since this would change the result.

EDIT

As @KStarGamer and @ClaudeLeibovici pointed out, result seems to be $$\sum_{n=0}^\infty a_n\stackrel{(?)}=\frac{\pi}{4}\text{sech}\left(\frac{\pi}{2}\right)-\frac12 $$ Now the question is: how to prove it?

Zima
  • 2,925

6 Answers6

12

Recall that the Abel summation $\text{A-}\sum_{n=0}^{\infty} c_n$ is defined by

$$ \text{A-}\sum_{n=0}^{\infty} c_n := \lim_{x \to 1^-} \sum_{n=0}^{\infty} c_n x^n. $$

We collect some properties of Abel summation that is relevant to our computation. (If you are familiar with basic properties of Abel summation, you can skip this part.)

  1. (Abel's Theorem) If $\sum_{n=0}^{\infty} c_n$ is summable in ordinary sense (i.e., convergent as the limit of partial sums), then it is also Abel summable with $$ \text{A-}\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} c_n. $$

  2. Abel summation is linear. That is, if both $\text{A-}\sum_{n=0}^{\infty} c_n$ and $\text{A-}\sum_{n=0}^{\infty} d_n$ converge and $\alpha$ and $ \beta$ are constants, then $$ \text{A-}\sum_{n=0}^{\infty} (\alpha c_n + \beta d_n) = \alpha \left( \text{A-}\sum_{n=0}^{\infty} c_n \right) + \beta \left( \text{A-}\sum_{n=0}^{\infty} d_n \right) . $$

  3. We have $$ \text{A-}\sum_{n=0}^{\infty} (-1)^n = \frac{1}{2}. $$


Now we return to OP's problem. By noting that $\beta(s) = 1 + \mathcal{O}(3^{-s})$ as $s \to \infty$, we get

\begin{align*} \sum_{n=0}^{\infty} a_n &= \sum_{n=0}^{\infty} (-1)^n [\beta(2n+1) - 1] \\ &= \text{A-}\sum_{n=0}^{\infty} (-1)^n [\beta(2n+1) - 1] \\ &= \text{A-}\sum_{n=0}^{\infty} (-1)^n \beta(2n+1) - \frac{1}{2}. \end{align*}

So it suffices to compute the Abel sum $\text{A-}\sum_{n=0}^{\infty} (-1)^n \beta(2n+1)$. To this end, let $r \in [0, 1)$. Then using the integral representation of $\beta(s)$,

\begin{align*} \sum_{n=0}^{\infty} (-1)^n r^n \beta(2n+1) &= \sum_{n=0}^{\infty} \frac{(-1)^n r^n}{(2n)!} \int_{0}^{\infty} \frac{x^{2n} e^{-x}}{1+e^{-2x}} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \left( \sum_{n=0}^{\infty} \frac{(-1)^n r^n}{(2n)!} x^{2n} \right) \frac{e^{-x}}{1+e^{-2x}} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \cos(\sqrt{r}x) \frac{e^{-x}}{1+e^{-2x}} \, \mathrm{d}x \\ &= \frac{\pi}{4} \operatorname{sech}\left(\frac{\pi \sqrt{r}}{2}\right). \end{align*}

In the second step, we utilized Fubini's Theorem together with the estimate

$$ \int_{0}^{\infty} \sum_{n=0}^{\infty} \left| \frac{(-1)^n r^n}{(2n)!} x^{2n} \right| \frac{e^{-x}}{1+e^{-2x}} \, \mathrm{d}x \leq \int_{0}^{\infty} \cosh(\sqrt{r}x) \frac{e^{-x}}{1+e^{-2x}} \, \mathrm{d}x < \infty. $$

From this, we get

$$ \text{A-}\sum_{n=0}^{\infty} (-1)^n \beta(2n+1) = \frac{\pi}{4} \operatorname{sech}\left(\frac{\pi}{2}\right) $$

and therefore

$$ \sum_{n=0}^{\infty} a_n = \frac{\pi}{4} \operatorname{sech}\left(\frac{\pi}{2}\right) - \frac{1}{2} \approx -0.1869899172\ldots $$

Sangchul Lee
  • 167,468
9

Recall that $$\beta(s)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^s}$$ for $\Re(s)>0$. Meaning \begin{align*}S&\!:=\sum_{n=0}^{\infty}\left(\beta(4n+1)-\beta(4n+3)\right)\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\frac{4(-1)^k k (k+1)}{(2k+1)^{4n+3}} = \sum_{n=0}^{\infty}\sum_{k=\color{red}{1}}^{\infty}\frac{4(-1)^k k (k+1)}{(2k+1)^{4n+3}}\\ &=\sum_{k=1}^{\infty}\sum_{n=0}^{\infty}\frac{4(-1)^k k (k+1)}{(2k+1)^{4n+3}}=\sum_{k=1}^{\infty}\frac{(-1)^k\left(2k+1\right)}{2\left(2k^2+2k+1\right)}.\end{align*} Now recall by the Mittag-Leffler pole expansion for $\sec(z)$, $$\sec(z)=\sum_{k=0}^{\infty}\frac{(-1)^k (2k+1)\pi}{\left(k+\frac{1}{2}\right)^2\pi^2-z^2}.$$ Comparing with our series, we find that $$S=\frac{\pi}{4}\mathrm{sech}\left(\frac{\pi}{2}\right)-\frac{1}{2}.$$

KStarGamer
  • 5,089
  • 1
  • 18
  • 50
4

PRIMER: PARTIAL FRACTION EXPANSION OF THE SECH FUNCTION

In the Appendix of THIS ANSWER, I showed that

$$\frac{\pi}{2}\sec(\pi a/2)=2\sum_{n=0}^\infty \frac{(-1)^n(2n+1)}{(2n+1)^2-a^2}\tag1$$

Letting $a=i$ in $(1)$, we find that

$$\frac\pi2 \text{sech}(\pi/2)=2\sum_{n=0}^\infty \frac{(-1)^n(2n+1)}{(2n+1)^2+1}\tag2$$

In the following section, we will use $(2)$ to evaluate the series of interest $\sum_{n=0}^\infty \left(\beta(4n+1)-\beta(4n+3)\right)$


Using the series representation of the Beta Function as given by

$$\beta(s)=\sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)^s}$$

Then, we have

$$\begin{align} \sum_{n=0}^\infty \left(\beta(4n+1)-\beta(4n+3)\right)&=\sum_{n=0}^\infty \sum_{k=0}^\infty (-1)^k \left(\frac{1}{(2k+1)^{4n+1}}-\frac{1}{(2k+1)^{4n+3}}\right)\\\\ &= \sum_{k=1}^\infty (-1)^k \sum_{n=0}^\infty\left(\frac{1}{(2k+1)^{4n+1}}-\frac{1}{(2k+1)^{4n+3}}\right)\\\\ &=\sum_{k=1}^\infty (-1)^k \left(\frac{2k+1}{2(2k^2+2k+1)}\right)\\\\ &=\sum_{k=1}^\infty (-1)^k \frac{2k+1}{ ((2k+1)^2+1)}\\\\ &=\sum_{k=0}^\infty (-1)^k \frac{2k+1}{ ((2k+1)^2+1)}- \frac12\tag3 \end{align}$$

Comparing $(3)$ to $(2)$, we find that

$$\sum_{n=0}^\infty \left(\beta(4n+1)-\beta(4n+3)\right)=\frac\pi4 \text{sech}\left(\frac\pi2\right)-\frac12$$

Mark Viola
  • 179,405
  • May I ask why when interchanging the sums the index $k$ starts at $1$ instead of $0$? – Zima Feb 08 '24 at 19:03
  • 1
    @Zima Of course. Note the inner sum over $k$. When $k=0$, the summand is equal to $0$. So, we can exclude this. And in fact, we need to do so in order to apply the sum of a convergent geometric series. Note that we need $2k+1>1\implies k>0$. So we can exclude $k=0$ and we must exclude $k=0$. – Mark Viola Feb 08 '24 at 19:51
  • thank you very much, very clear answer – Zima Feb 09 '24 at 09:47
  • You're welcome! My pleasure. – Mark Viola Feb 09 '24 at 14:40
4

The series can be written as

$$ \begin{align} \sum_{n=0}^{\infty} \left(\beta(4n+1)-\beta(4n+3) \right) &= \sum_{n=0}^{\infty} \big(\left(\beta(4n+1)-1\right) - \left(\beta(4n+3)-1\right) \big) \\ &= \sum_{n=0}^{\infty} (-1)^{n} \left(\beta(2n+1)-1 \right). \end{align}$$

(The series is not $\sum_{n=0}^{\infty} (-1)^{n} \beta(2n+1) $, which is not a convergent series but exists in the Abel sense as Sangchul Lee showed. Wolfram Alpha, however, is strangely insistent that it does converge. )

For $s>0$, an integral representation for $\beta(s)-1$ is $$ \begin{align} \beta(s) -1 &= \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}e^{-x}}{1+e^{-2x}} \, \mathrm dx - \frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1}e^{-x} \, \mathrm dx \\ &= -\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}e^{-3x}}{1+e^{-2x}} \, \mathrm dx. \end{align}$$

Therefore, we have $$ \begin{align} \sum_{n=0}^{\infty} (-1)^{n} \left(\beta(2n+1)-1 \right) &= -\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \int_{0}^{\infty} \frac{x^{2n} e^{-3x}}{1+e^{-2x}} \, \mathrm dx \\ &= -\int_{0}^{\infty} \frac{e^{-3x}}{1+e^{-2x}} \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n}}{(2n)!} \, \mathrm dx \\ &= -\int_{0}^{\infty} \frac{e^{-3x}\cos(x)}{1+e^{-2x}} \, \mathrm dx\\ &= - \int_{0}^{\infty} \left(e^{-x}- \frac{1}{2}\frac{1}{\cosh(x)} \right)\cos(x) \, \mathrm dx \\ &=- \int_{0}^{\infty} e^{-x} \cos(x) \, \mathrm dx + \frac{1}{2} \int_{0}^{\infty} \frac{\cos (x)}{\cosh (x)} \, \mathrm dx \\ &\overset{\spadesuit}{=} - \frac{1}{2} + \frac{\pi}{4} \, \operatorname{sech} \left(\frac{\pi}{2} \right). \end{align}$$

Switching the order of integration and summation was justified by Fubini's theorem since $$\int_{0}^{\infty} \sum_{n=0}^{\infty} \left|-\frac{e^{-3x}}{1+e^{-2x}} \frac{(-1)^{n}x^{2n}}{(2n)!} \right| \, \mathrm dx = \int_{0}^{\infty} \frac{e^{-3x} \cosh(x)}{1+e^{-2x}} < \infty . $$


$\spadesuit $ Solve $\int \limits_{0}^{\infty} \frac{\cos(x)}{\cosh(x)} dx$ without complex integration.

Fourier transform of 1/cosh


We also have $$\sum_{n=0}^{\infty} \left(\beta(2n+1)-1 \right) = -\int_{0}^{\infty} \frac{e^{-3x} \cosh(x)}{1+e^{-2x}} \, \mathrm dx = -\frac{1}{2} \int_{0}^{\infty} e^{-2x} \, \mathrm dx = -\frac{1}{4}, $$

$$\sum_{n=1}^{\infty} \left(\beta(n)-1 \right) = - \int_{0}^{\infty} \frac{e^{-2x}}{1+e^{-2x}} \, \mathrm dx = - \frac{1}{2} \int_{0}^{1} \frac{\mathrm du}{u} = -\frac{\ln(2)}{2},$$

and

$$ \sum_{n=1}^{\infty} (-1)^{n-1}\left(\beta(n)-1 \right) = -\int_{0}^{\infty} \frac{e^{-4x}}{1+e^{-2x}} \, \mathrm dx = \frac{1}{2} \int_{0}^{1} \left( \frac{1}{1+u}-1 \right) \mathrm du = \frac{1}{2} \left(\ln(2)-1 \right).$$


For some reason Wolfram Alpha won't return approximate values for any of these series unless you remove the first term, which is just $\beta(1) -1 = \frac{\pi}{4}-1$.

3

Note $$\begin{eqnarray} S&=&\sum_{n=0}^\infty(\beta(4n+1)-\beta(4n+3))=\sum_{k=0}^\infty(-1)^k\beta(2k+1) \\ &=&\sum_{k=0}^\infty\sum_{n=0}^\infty\frac{(-1)^{k+n}}{(2n+1)^{2k+1}}=\sum_{n=0}^\infty\sum_{k=0}^\infty\frac{(-1)^{k+n}}{(2n+1)^{2k+1}}\\ &=&\sum_{n=0}^\infty(-1)^n\sum_{k=0}^\infty\frac{(-1)^{k}}{(2n+1)^{2k+1}}=\frac14\sum_{n=0}^\infty(-1)^n\frac{2n+1}{n^2+n+\frac12}\\ &=&\frac14\sum_{n=0}^\infty(-1)^n\bigg[\frac{1}{n+\frac12(1-i)}+\frac{1}{n+\frac12(1+i)}\bigg]\\ &=&\frac14\sum_{n=0}^\infty\bigg[\bigg(\frac{1}{2n+\frac12(1-i)}-\frac{1}{2n+1+\frac12(1-i)}\bigg)+\bigg(\frac{1}{2n+\frac12(1+i)}-\frac{1}{2n+1+\frac12(1+i)}\bigg)\bigg]\\ &=&\frac18\sum_{n=0}^\infty\bigg[\bigg(\frac{1}{n+\frac14-\frac i4}-\frac{1}{n+\frac34-\frac i4}\bigg)+\bigg(\frac{1}{n+\frac14+\frac i4}-\frac{1}{n+\frac34+\frac i4}\bigg)\bigg]\\ &=&\frac18\sum_{n=0}^\infty\bigg[\bigg(\frac{1}{n+\frac14-\frac i4}-\frac{1}{n+\frac34+\frac i4}\bigg)+\bigg(\frac{1}{n+\frac14+\frac i4}-\frac{1}{n+\frac34-\frac i4}\bigg)\bigg]\\ \end{eqnarray}$$ Using $$ \sum_{n=0}^\infty\bigg(\frac1{n\alpha+\beta}-\frac1{n\alpha+(\alpha-\beta)}\bigg)=\frac{\pi}{\alpha}\cot(\frac{\pi\beta}{\alpha}) $$ one has $$ S=\frac18\bigg(i\pi\coth(\frac{1+i}{4})+\pi\cot(\frac{1+i}{4})\bigg)=2\pi\text{sech}(\frac{\pi}2). $$

xpaul
  • 44,000
2

Mathematica 14.0 gives the closed-form answer by

ComplexExpand[Sum[(Integrate[1/Gamma[s]*x^(s - 1)*Exp[-x]/(1 + Exp[-2 x]) /. s -> 4 n + 1, {x,
   0, Infinity}]) - Integrate[
1/Gamma[s]*x^(s - 1)*Exp[-x]/(1 + Exp[-2 x]) /. s -> 4 n + 3, {x, 
 0, Infinity}], {n, 0, Infinity}] // FullSimplify]

$$\frac{\pi \cosh \left(\frac{\pi }{2}\right)}{2 (1+\cosh (\pi ))} $$

user64494
  • 5,811