The series can be written as
$$ \begin{align} \sum_{n=0}^{\infty} \left(\beta(4n+1)-\beta(4n+3) \right) &= \sum_{n=0}^{\infty} \big(\left(\beta(4n+1)-1\right) - \left(\beta(4n+3)-1\right) \big) \\ &= \sum_{n=0}^{\infty} (-1)^{n} \left(\beta(2n+1)-1 \right). \end{align}$$
(The series is not $\sum_{n=0}^{\infty} (-1)^{n} \beta(2n+1) $, which is not a convergent series but exists in the Abel sense as Sangchul Lee showed. Wolfram Alpha, however, is strangely insistent that it does converge. )
For $s>0$, an integral representation for $\beta(s)-1$ is $$ \begin{align} \beta(s) -1 &= \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}e^{-x}}{1+e^{-2x}} \, \mathrm dx - \frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1}e^{-x} \, \mathrm dx \\ &= -\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1}e^{-3x}}{1+e^{-2x}} \, \mathrm dx. \end{align}$$
Therefore, we have $$ \begin{align} \sum_{n=0}^{\infty} (-1)^{n} \left(\beta(2n+1)-1 \right) &= -\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \int_{0}^{\infty} \frac{x^{2n} e^{-3x}}{1+e^{-2x}} \, \mathrm dx \\ &= -\int_{0}^{\infty} \frac{e^{-3x}}{1+e^{-2x}} \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n}}{(2n)!} \, \mathrm dx \\ &= -\int_{0}^{\infty} \frac{e^{-3x}\cos(x)}{1+e^{-2x}} \, \mathrm dx\\ &= - \int_{0}^{\infty} \left(e^{-x}- \frac{1}{2}\frac{1}{\cosh(x)} \right)\cos(x) \, \mathrm dx \\ &=- \int_{0}^{\infty} e^{-x} \cos(x) \, \mathrm dx + \frac{1}{2} \int_{0}^{\infty} \frac{\cos (x)}{\cosh (x)} \, \mathrm dx \\ &\overset{\spadesuit}{=} - \frac{1}{2} + \frac{\pi}{4} \, \operatorname{sech} \left(\frac{\pi}{2} \right). \end{align}$$
Switching the order of integration and summation was justified by Fubini's theorem since $$\int_{0}^{\infty} \sum_{n=0}^{\infty} \left|-\frac{e^{-3x}}{1+e^{-2x}} \frac{(-1)^{n}x^{2n}}{(2n)!} \right| \, \mathrm dx = \int_{0}^{\infty} \frac{e^{-3x} \cosh(x)}{1+e^{-2x}} < \infty . $$
$\spadesuit $ Solve $\int \limits_{0}^{\infty} \frac{\cos(x)}{\cosh(x)} dx$ without complex integration.
Fourier transform of 1/cosh
We also have $$\sum_{n=0}^{\infty} \left(\beta(2n+1)-1 \right) = -\int_{0}^{\infty} \frac{e^{-3x} \cosh(x)}{1+e^{-2x}} \, \mathrm dx = -\frac{1}{2} \int_{0}^{\infty} e^{-2x} \, \mathrm dx = -\frac{1}{4}, $$
$$\sum_{n=1}^{\infty} \left(\beta(n)-1 \right) = - \int_{0}^{\infty} \frac{e^{-2x}}{1+e^{-2x}} \, \mathrm dx = - \frac{1}{2} \int_{0}^{1} \frac{\mathrm du}{u} = -\frac{\ln(2)}{2},$$
and
$$ \sum_{n=1}^{\infty} (-1)^{n-1}\left(\beta(n)-1 \right) = -\int_{0}^{\infty} \frac{e^{-4x}}{1+e^{-2x}} \, \mathrm dx = \frac{1}{2} \int_{0}^{1} \left( \frac{1}{1+u}-1 \right) \mathrm du = \frac{1}{2} \left(\ln(2)-1 \right).$$
For some reason Wolfram Alpha won't return approximate values for any of these series unless you remove the first term, which is just $\beta(1) -1 = \frac{\pi}{4}-1$.