How to find $P((X_2 - X_1)^2 + (Y_2 - Y_1)^2 > X_2 + X_1)$ where $X_1, X_2, Y_1, Y_2 \sim U[0,5]$ and iid.
Rearranging the probability, we have:
$$P\left(\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2} > X_2 + X_1\right) = P((Y_2 - Y_1)^2) > (X_2 + X_1)^2 - (X_2 - X_1)^2 )$$
Then letting $T=Y_2 - Y_1,U=X_2+X_1,V=X_2-X_1$, we have:
$$ P((Y_2 - Y_1)^2 > X_2 + X_1 - (X_2 - X_1)^2 ) = P(T^2 > U^2 - V^2 ) $$
where
$$ f(t)= \begin{cases}t+5 & \text { for } -5<t<5 \\ 5-t & \text { for } 0 \leq t<5 \\ 0 & \text { otherwise. }\end{cases} $$
$$ f(u)= \begin{cases}u & \text { for } 0<u<5 \\ 5-u & \text { for } 5 \leq u<10 \\ 0 & \text { otherwise. }\end{cases} $$
$$ f(v)= \begin{cases}v+5 & \text { for } -5<v<5 \\ 5-v & \text { for } 0 \leq v<5 \\ 0 & \text { otherwise. }\end{cases} $$
But I am stuck here, I am not sure what the joint distribution would be. Further, I am not sure how the marginal would be written out since we have $U^2 - V^2$ on the RHS instead of 1 variable…
Do we have to make a new variable i.e. $Z = U^2 - V^2$?
$$P(T^2 > Z) = \int_0^5 \int_0^z f(t,z)dtdz$$
I am not sure where to go from here
https://math.stackexchange.com/a/4856444/1231520
some days ago!!!
– Amir Feb 08 '24 at 10:22