Question: What is the closed form of this following integral? $ \int_{0}^{\frac{\pi}{2}} x \log(1-\cos x) \,dx.$
We have $ a_{k}:=\int_{0}^{\pi/2}{x \cos^k x dx},$ then posit from the Beppo-Levi theorem, we have $ \int_{0}^{\pi/2}{x\ln\left(1-2\cos x \right)}dx=-\sum_{k=1}^{\infty}{\frac{a_{k}}{k}}.$
$ a_{k}=\int_{0}^{\pi/2}{x\cos^{k-1}x \left(\sin x \right)x}=-1/k -\left(k-1 \right)a_{k}-\left(k-1 \right)a_{k-2}.$
From here we have the reductionist relation.With $\displaystyle ka_{k}-\left(k-1 \right)a_{k-2}=\frac{-1}{k}$ a simple induction we have that $ a_{k}=b_{k}\pi^2 +c_{k}\pi+d_{k},a_{k},b_{k},c_{k} \in \mathbb{Q}.$ From here we easily find that $2kb_{2k}=(2k-1)b_{2k-2},b_{2k+1}=0,b_{2}=1/8$.Therefore $ b_{2k}=\frac{1}{8}\cdot \frac{\binom{2k}{k}}{4^{k}}$
Consequently $ \sum_{k=1}^{\infty}{\frac{b_{k}}{k}}=\frac{1}{16}\sum_{k=1}^{\infty}{\frac{1}{k\cdot 4^{k}}\binom{2k}{k}}=\frac{1}{16}\int_{0}^{1/4}{\left(\frac{1}{\sqrt{1-4x}}-1 \right)\frac{1}{x}}dx= \frac{1}{16}\int_{0}^{1}{\frac{1}{\sqrt{x}\left(\sqrt{x}+1 \right)}}dx=...=\frac{\ln 2}{8}.$
For the sequence $c_{k}$ it easily follows that , so we have that $(2k+1)a_{2k+1}=2ka_{2k-1},a_{1}=1/2\Rightarrow a_{2k+1}=\frac{4^{k}\left(k!)^2 \right)}{2\left(2k \right)!(2k+1)}$= $ \sum_{k=1}^{\infty}{\frac{c_{k}}{k}}=\sum_{n=0}^{\infty}{\frac{4^{n}\left(n! \right)^2}{2\cdot (2n)!(2n+1)^2}}.$