6

Question: What is the closed form of this following integral? $ \int_{0}^{\frac{\pi}{2}} x \log(1-\cos x) \,dx.$

We have $ a_{k}:=\int_{0}^{\pi/2}{x \cos^k x dx},$ then posit from the Beppo-Levi theorem, we have $ \int_{0}^{\pi/2}{x\ln\left(1-2\cos x \right)}dx=-\sum_{k=1}^{\infty}{\frac{a_{k}}{k}}.$

$ a_{k}=\int_{0}^{\pi/2}{x\cos^{k-1}x \left(\sin x \right)x}=-1/k -\left(k-1 \right)a_{k}-\left(k-1 \right)a_{k-2}.$

From here we have the reductionist relation.With $\displaystyle ka_{k}-\left(k-1 \right)a_{k-2}=\frac{-1}{k}$ a simple induction we have that $ a_{k}=b_{k}\pi^2 +c_{k}\pi+d_{k},a_{k},b_{k},c_{k} \in \mathbb{Q}.$ From here we easily find that $2kb_{2k}=(2k-1)b_{2k-2},b_{2k+1}=0,b_{2}=1/8$.Therefore $ b_{2k}=\frac{1}{8}\cdot \frac{\binom{2k}{k}}{4^{k}}$

Consequently $ \sum_{k=1}^{\infty}{\frac{b_{k}}{k}}=\frac{1}{16}\sum_{k=1}^{\infty}{\frac{1}{k\cdot 4^{k}}\binom{2k}{k}}=\frac{1}{16}\int_{0}^{1/4}{\left(\frac{1}{\sqrt{1-4x}}-1 \right)\frac{1}{x}}dx= \frac{1}{16}\int_{0}^{1}{\frac{1}{\sqrt{x}\left(\sqrt{x}+1 \right)}}dx=...=\frac{\ln 2}{8}.$

For the sequence $c_{k}$ it easily follows that , so we have that $(2k+1)a_{2k+1}=2ka_{2k-1},a_{1}=1/2\Rightarrow a_{2k+1}=\frac{4^{k}\left(k!)^2 \right)}{2\left(2k \right)!(2k+1)}$= $ \sum_{k=1}^{\infty}{\frac{c_{k}}{k}}=\sum_{n=0}^{\infty}{\frac{4^{n}\left(n! \right)^2}{2\cdot (2n)!(2n+1)^2}}.$

FD_bfa
  • 3,989
Martin.s
  • 1
  • 1
  • 22
  • 14
    Is there a question in there somewhere? – DecarbonatedOdes Feb 07 '24 at 07:29
  • @DecarbonatedOdes Yes, on AOPS, but I’m trying a new way to find the answer –  Feb 07 '24 at 07:37
  • If you ask WA for the definite integral, it also gives the antiderivatives, which can be checked by differentiation (even if that is like peaking at the end). – J.G. Feb 07 '24 at 07:57
  • WA evaluates the integral successfully does that mean the question is not good? –  Feb 07 '24 at 08:25
  • 7
    Reading your question, I have no idea what's going on. "Is there a question in there somewhere?" The answer is currently still no. You must edit to make clear what you actually want from us. Have you solved it or what? I'm not even sure – FShrike Feb 07 '24 at 14:12
  • 1
    Is the question "I'd like to find a closed form evaluation for this integral"? If so, I think you should clarify that. Also, as it stands, the work you put in could be easily mistaken at a glance for a complete answer, rather than an unsuccessful attempt. You might want to make the fact that this is only an unsuccessful attempt a bit more clear. – Christian E. Ramirez Feb 07 '24 at 16:26

3 Answers3

6

Using $$ \Re\log(1-e^{ix})=\ln|1-e^{ix}|=\frac12(\log2+\log(1-\cos x)) $$ one has $$\begin{eqnarray} I&=&\int_{0}^{\frac{\pi}{2}} x \log(1-\cos x) \,dx\\ &=&-\frac18\pi^2\log2+2\Re\int_{0}^{\frac{\pi}{2}} x \log(1-e^{ix}) \,dx\\ &=&-\frac18\pi^2\log2+2\Re i\int_{0}^{\frac{\pi}{2}} x d\text{Li}_2\left(e^{i x}\right)\\ &=&-\frac18\pi^2\log2+2\Re \bigg[i x \text{Li}_2\left(e^{i x}\right)-\text{Li}_3\left(e^{i x}\right)\bigg]\bigg|_{0}^{\frac{\pi}{2}}\\ &=&-\frac18\pi^2\log2+2\Re \bigg[\frac\pi2 i\text{Li}_2(i)-\text{Li}_3(i)+\zeta(3)\bigg]. \end{eqnarray}$$ Update: (1) It is easy to see $$ i\text{Li}_2(i)=-C-i\frac{\pi^2}{48}. $$ (2). From https://en.wikipedia.org/wiki/Polylogarithm, one has $$ \text{Li}_3(i)=-2^{-3}\eta(3)+i\beta(3)=-\frac18(1-\frac1{2^2})\zeta(3)+i\beta(3)=-\frac3{32}\zeta(3)+i\beta(3). $$ So $$ I=-\frac{\pi^2}8\ln2+\frac{35}{16}\zeta(3)-\pi C $$

xpaul
  • 44,000
5

\begin{align} &\int_{0}^{\frac{\pi}{2}} x \ln(1-\cos x) \,dx \\ = & \int_{0}^{\frac{\pi}{2}} x \ln(\sin x) \overset{x\to\frac \pi2-x}{dx } + \int_{0}^{\frac{\pi}{2}} x\ln(\tan\frac x2)\,dx \\ = &\ \frac12\int_{0}^{\frac{\pi}{2}} \left[x \ln(\sin x) +(\frac\pi2-x)\ln(\cos x)\right]dx\\ & + \int_{0}^{{\pi}} x\ln(\tan\frac x2) \overset{x\to 2x}{dx } -\int_{\frac\pi2}^{{\pi}} x\ln(\tan\frac x2) \overset{x\to\pi-x}{dx } \\ =& \ \frac52\int_{0}^{\frac{\pi}{2}} x\ln(\tan x)dx + \frac\pi4\int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx + \frac\pi2 \int_0^{\frac\pi2}\ln(\tan \frac x2)dx\\ =& \ \frac{35}{16}\zeta(3) -\frac{\pi^2}8\ln2-\pi G \end{align}

where $ \int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx=-\frac\pi2\ln2$, $ \int_0^{\frac\pi2}\ln(\tan \frac x2)dx =-2G$ and $\int_{0}^{\frac{\pi}{2}} x\ln(\tan x)= \frac78\zeta(3)$.

Quanto
  • 97,352
5

First, we have

$$\begin{align} \log(1-\cos(x))&=\log\left(2\sin^2(x/2)\right)\\\\ &=\log(2)+2\log(\sin(x/2))\\\\ &=\log(2)+2\left(-\log(2)-\sum_{n=1}^\infty \frac{\cos(nx)}{n}\right)\\\\ &=-\log(2)-2\sum_{n=1}^\infty \frac{\cos(nx)}{n} \end{align}$$

where we used the well-known Fourier Series (See Here for example) of $\log(\sin(x/2))$.

Then, we have

$$\begin{align} \int_0^{\pi/2}x\log(1-\cos(x))\,dx&=-\frac{\pi^2}8 \log(2)-2\sum_{n=1}^\infty \frac1n\int_0^{\pi/2}x\cos(nx)\,dx\\\\ &=-\frac{\pi^2}8 \log(2)+2\sum_{n=1}^\infty \left(\frac1{n^3}-\frac\pi2 \frac{\sin(n\pi/2)}{n^2}-\frac{\cos(n\pi/2)}{n^3}\right)\\\\ &=-\frac{\pi^2}8 \log(2)+2\sum_{n=1}^\infty \frac1{n^3}+\pi \sum_{n=1}^\infty \frac{(-1)^{n}}{(2n-1)^2}+2\sum_{n=1}^\infty \frac{(-1)^{n-1}}{(2n)^3}\\\\ &=-\frac{\pi^2}8 \log(2)+2\zeta(3)-\pi G+\frac3{16}\zeta(3)\\\\ &=-\frac{\pi^2}8 \log(2)+\frac{35}{16}\zeta(3)-\pi G \end{align}$$

where we used $\sum_{n=1}^\infty \frac{1}{n^3}=\zeta(3)$, $\sum_{n=1}^\infty \frac{(-1)^n}{(2n-1)^2}=-G$, and $\sum_{n=1}^\infty \frac{(-1)^{n-1}}{(2n)^3}=\frac{3}{4}\zeta(3)$.

Mark Viola
  • 179,405