Let us assume that by the $\Delta$ operator you mean the symmetric difference and that for a given set $D=\{d_1, d_2, \ldots,d_n,\ldots\}$ by $D+y$ you mean $\{d_1+y, d_2+y,\ldots,d_n+y,\ldots\}$. Let us also assume that $m(D)<+\infty$ and $m(D+y)<+\infty$.
Let us rewrite your integral a bit:
\begin{align}
0&= \int_{D\Delta D+y}\;m(dx)\\
&=\int_{(D\setminus D+y)\cup (D+y \setminus D)}\;m(dx)\\
&=\int_{\mathbb{R}}\chi_{(D\setminus D+y)\cup (D+y \setminus D)}(x)\;m(dx)\\
&=\int_{\mathbb{R}}\chi_{D\setminus D+y}(x) \oplus\chi_{D+y\setminus D}(x)\;m(dx)\\
&=\int_{\mathbb{R}}|\chi_{D\setminus D+y}(x)| \oplus|\chi_{D+y\setminus D}(x)|\;m(dx)\\
&= \int_{\mathbb{R}}|\chi_{D\setminus D+y}(x) -\chi_{D+y\setminus D}(x)|\;m(dx)\;\text{ (by the properties of xor)}\\
&= \int_{\mathbb{R}}|(\chi_{D\setminus D+y}(x)+\chi_{D\cap D+y}(x)) -(\chi_{D+y\setminus D}(x)+\chi_{D+y\cap D}(x))|\;m(dx)\\
&= \int_{\mathbb{R}}|(\chi_{(D\cap (D+y)^c)\cup(D\cap D+y)}(x)) -(\chi_{(D+y\cap D^c)\cup(D+y\cap D)}(x))|\;m(dx)\\
&=\int_{\mathbb{R}}|\chi_D(x)-\chi_{D+y}(x)|\;m(dx)
\end{align}
Since we have that by given the measure over the symmetric difference is zero, we have that the last integral evaluates exactly to zero as well. After that you can apply the fact mentioned by @geetha290krm and get that $|\chi_D(x)-\chi_{D+y}(x)|=0$ a.e., and further that
$$
\chi_D(x)=\chi_{D+y}(x)\; \text{ a.e.}
$$