There exists some real $2 \times 2$ matrix $A$, such that $A^2+A+I=0$?
$$ A\ =\ \left[\begin{array}{ c c } a & b\\ c & d \end{array}\right] $$
$$ A^{2} = \left[\begin{array}{ c c } a & b\\ c & d \end{array}\right] \left[\begin{array}{ c c } a & b\\ c & d \end{array}\right] =\ \left[\begin{array}{ c c } a^{2} +bc\ & ab+bd\\ ac+cd & bc+d^{2} \end{array}\right] $$
$$ A^{2} \ +\ A\ +I\ =\ 0\ =\ \left[\begin{array}{ c c } a^{2} +bc\ & ab+bd\\ ac+cd & bc+d^{2} \end{array}\right] +\left[\begin{array}{ c c } a & b\\ c & d \end{array}\right] +\left[\begin{array}{ c c } 1 & 0\\ 0 & 1 \end{array}\right] \ \ =\ 0 $$
$$ \left[\begin{array}{ c c } a^{2} +bc\ +a+1 & ab+bd+b\\ ac+cd+c & bc+d^{2} +d+1 \end{array}\right] = 0 $$
$$ ab + bd + b = 0 $$ $$ b(a+d+1) = 0 $$ $$ ac + cd + c = c(a+d+1) = 0 $$ $$ (a+d+1) = 0 \text{ or } c = 0 \text{ or } b = 0 $$ $$ -d = a+1 $$
$A = \left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$
yields $A = \left[\begin{array}{cc}a & b \ c & d\end{array}\right]$ (although you might be better off putting it on its own line). – Brian Tung Jan 31 '24 at 07:12