Let $\mathcal{B}$ denote the Borel sigma algebra. Is it true that
$\mathcal{B}([0,1]) = \{A \cap [0,1] \ | \ A \in \mathcal{B}(\mathbb{R})$} ?
Let $\mathcal{B}$ denote the Borel sigma algebra. Is it true that
$\mathcal{B}([0,1]) = \{A \cap [0,1] \ | \ A \in \mathcal{B}(\mathbb{R})$} ?