I have to evaluate \begin{equation} L=\lim_{x\to 0} \frac{1-e^{\frac{x^2}{2}}\cos x}{2\sin^2x -x \arctan2x} \end{equation}
I tried with de l'Hopital's rule but it seems not working, am I missing something?
EDIT: I'll explain better what I tried & where I got stuck.
Straightforward substitution leads to a $\frac{0}{0}$ form.
So I tried de l'Hopital:
Let $f(x)=1-e^{\frac{x^2}{2}}\cos x$ (the numerator) and $g(x)=2\sin^2x -x \arctan2x$ (the denominator).
We have:
\begin{equation} f'(x) = e^{\frac{x^2}{2}}(\sin x -x \cos x) \end{equation}
\begin{equation} g'(x) = -\frac{2x}{1+4x^2}-\arctan(2x) +4\sin x \cos x \end{equation}
This still leads to a $\frac{0}{0}$ form.
Differentiating again, we have
\begin{equation} f''(x) = xe^{\frac{x^2}{2}}(2\sin x -x \cos x) \end{equation}
\begin{equation} g''(x)= 4\left(-\sin^2 x +\cos^2 x -\frac{1}{(4x^2+1)^2} \right) \end{equation}
Still, evaluating the limit again leads to a $\frac{0}{0}$ form. Am I losing something?