This is really just a restatement of @mathworker21 's answer, slightly simplified and clarified. I'm posting this per the OP's request as the OP remains confused about that answer.
As the OP already mentioned, if $\mu(E) > 0$ and $\mu(E^c) > 0$, then there is a finite open interval $I_1$ with $\mu(E \cap I_1) > \frac{3}{4}\mu(I_1)$ and a finite open interval $I_2$ with $\mu(E \cap I_2) < \frac{1}{4}\mu(I_2)$. Let $x_i$ be the center point of $I_i$ and $r_i$ be the radius of $I_i$, i.e., $I_i = (x_i - r_i, x_i + r_i)$ for $i = 1, 2$. The first point I'll observe here is that, by replacing $I_1$ or $I_2$ if necessary, I may assume $r_1$ and $r_2$ are close to each other. More precisely, I may assume $r_2 \leq r_1 < 3r_2$.
Indeed, if we have started with $r_1 < r_2$, then we may divide $I_2$ into finitely many intervals $\{J_k\}_{k = 1}^n$ with $J_k$ having radius $\frac{1}{2}r_1$ for all $k < n$ and $J_n$ having radius between $\frac{1}{2}r_1$ and $r_1$. (Just divide $I_2$ into equal intervals of radius $\frac{1}{2}r_1$. Then the remainder has radius smaller than $\frac{1}{2}r_1$. Add the remainder to the final interval to get an interval of radius between $\frac{1}{2}r_1$ and $r_1$.) Now, if all $J_k$ satisfies $\mu(E \cap J_k) \geq \frac{1}{4}\mu(J_k)$, then summing over all $k$ yields $\mu(E \cap I_2) \geq \frac{1}{4}\mu(I_2)$, contradicting the assumption on $I_2$. Hence, we may replace $I_2$ by a $J_k$ with $\mu(E \cap J_k) < \frac{1}{4}\mu(J_k)$. As $J_k$ has radius between $\frac{1}{2}r_1$ and $r_1$, we now have $\frac{1}{2}r_1 \leq r_2 \leq r_1$, i.e., $r_2 \leq r_1 \leq 2r_2 < 3r_2$.
Similarly, if we have started with $r_1 \geq 3r_2$, then we may divide $I_1$ into finitely many intervals $\{J_k\}_{k = 1}^n$ with $J_k$ having radius $r_2$ for all $k < n$ and $J_n$ having radius between $r_2$ and $2r_2$. By a similar argument, we may replace $I_1$ by one of the $J_k$. Then $r_2 \leq r_1 \leq 2r_2 < 3r_2$.
To summarize, there exists $I_i = (x_i - r_i, x_i + r_i)$ s.t. $\mu(E \cap I_1) > \frac{3}{4}\mu(I_1)$, $\mu(E \cap I_2) < \frac{1}{4}\mu(I_2)$, and $r_2 \leq r_1 < 3r_2$. Let $r = \frac{3r_2 - r_1}{4}$. Since $r_1 < 3r_2$, we have $r > 0$. Then the interval $(x_1 - x_2 - r, x_1 - x_2 + r)$ is open and nonempty, so there is $z \in (x_1 - x_2 - r, x_1 - x_2 + r)$ s.t. $\mu(E\,\Delta\,(E + z)) = 0$. Note that,
$$\begin{split}
E\,\Delta\,(E + z) &\supseteq (E \cap I_1) \setminus (E + z)\\
&= (E \cap I_1) \setminus [(E + z) \cap I_1]\\
&= (E \cap I_1) \setminus ([E \cap (I_1 - z)] + z)\\
&= (E \cap I_1) \setminus ([E \cap (x_1 - z - r_1, x_1 - z + r_1)] + z)
\end{split}$$
Let $s = \frac{3}{4}r_1 - \frac{1}{4}r_2 > 0$. Observe that, as $z \in (x_1 - x_2 - r, x_1 - x_2 + r)$, we have,
$$\begin{split}
x_1 - z - r_1 \geq x_2 - r - r_1 = x_2 - \frac{3}{4}r_2 + \frac{1}{4}r_1 - r_1 = x_2 - \frac{3}{4}r_2 - \frac{3}{4}r_1 = x_2 - r_2 - s\\
x_1 - z + r_1 \leq x_2 + r + r_1 = x_2 + \frac{3}{4}r_2 - \frac{1}{4}r_1 + r_1 = x_2 + \frac{3}{4}r_2 + \frac{3}{4}r_1 = x_2 + r_2 + s
\end{split}$$
Therefore,
$$\begin{split}
(x_1 - z - r_1, x_1 - z + r_1) &\subseteq (x_2 - r_2 - s, x_2 + r_2 + s)\\
&= I_2 \cup (x_2 - r_2 - s, x_2 - r_2] \cup [x_2 + r_2, x_2 + r_2 + s)
\end{split}$$
So,
$$\begin{split}
\mu([E \cap (x_1 - z - r_1, x_1 - z + r_1)] + z) &= \mu(E \cap (x_1 - z - r_1, x_1 - z + r_1))\\
&\leq \mu(E \cap I_2) + \mu((x_2 - r_2 - s, x_2 - r_2]) + \mu([x_2 + r_2, x_2 + r_2 + s))\\
&< \frac{1}{4}\mu(I_2) + 2s\\
&= \frac{1}{2}r_2 + \frac{3}{2}r_1 - \frac{1}{2}r_2\\
&= \frac{3}{2}r_1
\end{split}$$
So,
$$\begin{split}
\mu(E\,\Delta\,(E + z)) &\geq \mu((E \cap I_1) \setminus ([E \cap (x_1 - z - r_1, x_1 - z + r_1)] + z))\\
&\geq \mu(E \cap I_1) - \mu([E \cap (x_1 - z - r_1, x_1 - z + r_1)] + z)\\
&> \frac{3}{4}\mu(I_1) - \frac{3}{2}r_1\\
&= 0
\end{split}$$
This contradicts $\mu(E\,\Delta\,(E + z)) = 0$. So our original assumption must be wrong, i.e., we must have $\mu(E) = 0$ or $\mu(E^c) = 0$.