I want so show the following: For $p \in [1, \infty)$ consider $f \in L^p(\mathbb{R})$ and the sequence $(f_n)_n$ such that $f_n \in L^p(\mathbb{R})$ for $n \in \mathbb{N}$. Show that, if $f_n$ converges to $f$ in $L^p$, then $(f_n)_n$ has a subsequence $(f_{n_k})_k$, such that $f_{n_k}(x) \rightarrow f(x)$ for $k \rightarrow \infty$ a.e on $x \in \mathbb{R}$.
My attempt:
Since $f_n \rightarrow f \in L^p$ we get $||f_n-f||^p_p \rightarrow 0$, i.e.
$\int_{\mathbb{R}} |f_n(x)-f(x)| \mu(dx) \rightarrow 0$ a.e
thus $|f_n(x)-f(x)| \rightarrow 0$, a.e.
My problem is, that I am not really sure, if we showed that $\lim_{n \rightarrow \infty} ||f_n-f||_p=0 \Rightarrow \lim_{n \rightarrow \infty }f_n=f \text{ a.e } \text{ on } \mathbb{R}$.
I tried to prove this statement, but wasn't able to.
So, my question is how to show that $\lim_{n \rightarrow \infty} ||f_n-f||_p=0 \Rightarrow \lim_{n \rightarrow \infty }f_n=f \text{ a.e } \text{ on } \mathbb{R}$.
(If my approach is correct, else how do I show the statement in the beginning.)