Suppose we are trying to show that
$$\sum_{r=1}^{n-1} {n-2\choose r-1}
r^{r-1} (n-r)^{n-r-2} = n^{n-2}$$
where $n\ge 2.$
Looking to the combinatorial proof for inspiration we present the
labelled tree function $T(z)$ with functional equation
$$\mathcal{T} = \mathcal{Z} \times \mathfrak{P}(\mathcal{T})
\quad\text{or}\quad
T(z) = z \exp T(z)$$
which counts the number of labelled rooted trees on $n$ nodes so that
$$n! [z^n] T(z) = n^{n-1}.$$
We now re-write the equation to better match the tree function.
Start with
$$\sum_{r=0}^{n-2} {n-2\choose r}
(r+1)^r (n-r-1)^{n-r-3} = n^{n-2}$$
and continue with
$$\sum_{r=0}^{n} {n\choose r}
(r+1)^r (n+1-r)^{n-r-1} = (n+2)^n.$$
Observe that when we multiply two exponential generating functions of
the sequences $\{a_n\}$ and $\{b_n\}$ we get that
$$ A(z) B(z) = \sum_{n\ge 0} a_n \frac{z^n}{n!}
\sum_{n\ge 0} b_n \frac{z^n}{n!}
= \sum_{n\ge 0}
\sum_{k=0}^n \frac{1}{k!}\frac{1}{(n-k)!} a_k b_{n-k} z^n\\
= \sum_{n\ge 0}
\sum_{k=0}^n \frac{n!}{k!(n-k)!} a_k b_{n-k} \frac{z^n}{n!}
= \sum_{n\ge 0}
\left(\sum_{k=0}^n {n\choose k} a_k b_{n-k}\right)\frac{z^n}{n!}$$
i.e. the product of the two generating functions is the generating
function of $$\sum_{k=0}^n {n\choose k} a_k b_{n-k}.$$
In the present case we have $$A(z) = T'(z)$$ by inspection.
Note also that
$$T(z) = \sum_{n\ge 1} n\times n^{n-2} \frac{z^n}{n!}
= \sum_{n\ge 1} n^{n-2} \frac{z^n}{(n-1)!}
= z \sum_{n\ge 1} n^{n-2} \frac{z^{n-1}}{(n-1)!}.$$
It follows that
$$B(z) = \sum_{n\ge 0} (n+1)^{n-1} \frac{z^{n}}{n!}
= \frac{1}{z} T(z).$$
We thus obtain that
$$A(z) B(z) = \frac{1}{z} T(z) T'(z).$$
Observe that when we differentiate the functional equation we obtain
$$T'(z) = \exp T(z) + z \exp T(z) \times T'(z)
= \frac{1}{z} T(z) + T(z) \times T'(z)$$
and hence
$$T'(z) = \frac{1}{z} \frac{T(z)}{1-T(z)}.$$
This yields
$$A(z) B(z) = \frac{1}{z^2} \frac{T^2(z)}{1-T(z)}.$$
Now to extract coefficients from this we have
$$n! [z^n] A(z) B(z)
= \frac{n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
\frac{1}{z^2} \frac{T^2(z)}{1-T(z)} \; dz
\\ = \frac{n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+3}}
\frac{T^2(z)}{1-T(z)} \; dz.$$
Using a type of Lagrange inversion and putting $w=T(z)$ we get from
the functional equation
$w = z \exp w$ or $z = w \exp(-w)$ and hence
$dz = (\exp(-w) - w\exp(-w)) \; dw$
or $dz = \exp(-w) ( 1 - w ) \; dw,$
yielding for the integral
$$\frac{n!}{2\pi i}
\int_{|w|=\epsilon} \frac{\exp(w(n+3))}{w^{n+3}}
\frac{w^2}{1-w} \exp(-w)(1-w) \; dw
\\ = \frac{n!}{2\pi i}
\int_{|w|=\epsilon} \frac{\exp(w(n+2))}{w^{n+1}} \; dw.$$
Extracting the residue we find
$$n! \times \frac{(n+2)^{n}}{n!}
= (n+2)^n$$
as claimed, QED.