My attempt:
$\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^{n}$
$=\left(1+\frac{1}{\infty}\right)^{\infty}$
$=\left(1+0\right)^{\infty}$
$=\left(1\right)^{\infty}$
$=1$
Yet this clearly cannot be correct, as $\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^{n}=e$
Where was my mistake?