From the way you introduce $t(n)$, it’s given by
\begin{eqnarray*}
t(n)
&=&
\frac{\int_{n+1}^\infty\frac1{\lfloor x\rfloor^2}\mathrm dx-\int_{n+1}^\infty\frac1{x^2}\mathrm dx}{\int_{n+1}^\infty\frac1{(x-1)^2}\mathrm dx-\int_{n+1}^\infty\frac1{x^2}\mathrm dx}
\\[8pt]
&=&
\frac{\int_{n+1}^\infty\frac1{\lfloor x\rfloor^2}\mathrm dx-\frac1{n+1}}{\frac1n-\frac1{n+1}}\;.
\end{eqnarray*}
We can approximate the integral by writing it as a sum of integrals over unit intervals and expanding the integrands around the midpoints of the intervals:
\begin{eqnarray*}
\int_{n+1}^\infty\frac1{\lfloor x\rfloor^2}\mathrm dx
&=&
\sum_{k=n+1}^\infty\int_k^{k+1}\frac1{k^2}\mathrm dx
\\
&=&
\sum_{k=n+1}^\infty\int_{k-\frac12}^{k+\frac12}\frac1{k^2}\mathrm du
\\
&=&
\sum_{k=n+1}^\infty\int_{k-\frac12}^{k+\frac12}\frac1{(u+k-u)^2}\mathrm du
\\
&=&
\sum_{k=n+1}^\infty\int_{k-\frac12}^{k+\frac12}\frac1{u^2}\cdot\frac1{\left(1+\frac{k-u}u\right)^2}\mathrm du
\\
&=&
\sum_{k=n+1}^\infty\int_{k-\frac12}^{k+\frac12}\frac1{u^2}\left(1-2\frac{k-u}u+3\left(\frac{k-u}u\right)^2+O\left(\left(\frac{k-u}u\right)^3\right)\right)\mathrm du
\\
&=&
\frac1{n+\frac12}-8\sum_{k=n+1}^\infty\frac1{\left(4k^2-1\right)^2}+4\sum_{k=n+1}^\infty\frac{4k^2+3}{\left(4k^2-1\right)^3}+\sum_{k=n+1}^\infty O\left(\frac1{k^5}\right)
\\
&=&
\frac1{n+\frac12}-\frac12\sum_{k=n+1}^\infty\frac1{k^4}+\frac14\sum_{k=n+1}^\infty\frac1{k^4}+\sum_{k=n+1}^\infty O\left(\frac1{k^5}\right)
\\
&=&
\frac1{n+\frac12}-\frac1{12}\frac1{n^3}+ O\left(\frac1{n^4}\right)\;.
\end{eqnarray*}
Then
\begin{eqnarray*}
t(n)
&=&
\frac{\frac1{n+\frac12}-\frac1{12}\frac1{n^3}+ O\left(\frac1{n^4}\right)-\frac1{n+1}}{\frac1n-\frac1{n+1}}
\\[2pt]
&=&
\frac{\frac1{n+\frac12}-\frac1{n+1}}{\frac1n-\frac1{n+1}}+\left(n^2+O(n)\right)\left(-\frac1{12}\frac1{n^3}+O\left(\frac1{n^4}\right)\right)
\\[4pt]
&=&
\frac12-\frac14\cdot\frac1n-\frac1{12}\cdot\frac1n+O\left(\frac1{n^2}\right)
\\[4pt]
&=&
\frac12-\frac13\cdot\frac1n+O\left(\frac1{n^2}\right)\;,
\end{eqnarray*}
in excellent agreement with your numerical values.