Suppose $(a_n), (b_n)$ are positive, decreasing real sequences, $\displaystyle\sum a_n$ converges, $\displaystyle\lim_{n\to\infty} b_n=0,$ and $ \displaystyle\sum b_n$ diverges. For each $\alpha > 0,$ define $f(\alpha)$ to be the least integer $n$ such that $a_n< \alpha.$ Similarly, define $g(\alpha)$ to be the least integer $m$ such that $b_m< \alpha.$ Prove or disprove: $\displaystyle\liminf_{\alpha\to 0^+} \frac{f(\alpha)}{g(\alpha)} = 0.$
This question arose when thinking about this question, where the counter-examples in the answers are clearly also counter-examples to the proposition, "$\displaystyle\lim_{\alpha\to 0^+} \frac{f(\alpha)}{g(\alpha)} = 0.$"
I can't think of any counter-examples to the above question though. With the examples in the question linked above, I think $\displaystyle\liminf_{\alpha\to 0^+} \frac{f(\alpha)}{g(\alpha)} = 0.$
I guess the standard approach to prove the above question true is proof by contradiction. So suppose $\displaystyle\liminf_{\alpha\to 0^+} \frac{f(\alpha)}{g(\alpha)} \neq 0,\implies \displaystyle\liminf_{\alpha\to 0^+} \frac{f(\alpha)}{g(\alpha)} > 0,\ $ that is, $\ \exists\ \varepsilon>0,\ \exists\ t>0,\ $ such that $\frac{f(t')}{g(t')} > \varepsilon\ \forall\ 0<t'<t.\ $ I don't see how to proceed from here.