Since $\frac{\sqrt{x-1}}{\sqrt{x+1}}=\tan{\left(\frac12\sec^{-1}(x)\right)}$, we use the transformation
$$\int f\left(\tan{\left(\frac12\csc^{-1}(x)\right)}, \tan{\left(\frac12\sec^{-1}(x)\right)} \right)\,dx=\int f\left(e^{i\cos^{-1}(x)}, \frac{1-e^{i\cos^{-1}(x)}}{1+e^{i\cos^{-1}(x)}}\right)\,dx,\tag{1}$$
valid for $x\geq1$. This transformation has been discussed here, here, and here.
We first divide both the numerator and denominator by $\sqrt{x+1}$:
$$
\int\dfrac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}-3\sqrt{x+1}}\,dx = \int\dfrac{\frac{\sqrt{x-1}}{\sqrt{x+1}}-1}{\frac{\sqrt{x-1}}{\sqrt{x+1}}-3}\,dx.
$$
Now, we'll substitute $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ with $\frac{1-e^{i\cos^{-1}(x)}}{1+e^{i\cos^{-1}(x)}}$ using the transformation $(1)$:
$$
= \int\dfrac{\frac{1-e^{i\cos^{-1}(x)}}{1+e^{i\cos^{-1}(x)}}-1}{\frac{1-e^{i\cos^{-1}(x)}}{1+e^{i\cos^{-1}(x)}}-3}\,dx.
$$
Let's denote $u = \cos^{-1}(x)$. Then, $x = \cos{u}$ and $dx = -\sqrt{1-x^2}\,du = -\sqrt{1-\cos^2{(u)}}\, du = -\sin{(u)}\,du$. Now, we'll perform the substitution:
$$
= -\int\dfrac{\frac{1-e^{iu}}{1+e^{iu}}-1}{\frac{1-e^{iu}}{1+e^{iu}}-3}\sin{(u)}\,du.
$$
Since $\sin(u) = \frac{i}{2}(e^{-iu} - e^{iu})$ and simplifying, we get:
$$
\frac{i}{2}\int \frac{e^{2iu}-1}{2e^{iu}+1} \, du.
$$
Now, let $v = e^{iu}$. Then, $dv = ie^{iu}\,du = iv\,du$ and $du = \frac{1}{iv}\,dv$. Substituting, we have:
$$\frac12\int \frac{v^2 - 1}{v(2v + 1)} \, dv=\frac12\int 1\,dv - \frac12\int \frac{v+2}{v(2v+1)}\,dv.$$
At this point, we can perform partial fraction decomposition on the second integral on the right, which is even simpler than the integral @MathStudent arrived at through Euler substitution.