Define the integral $I_n$ as $$I_n = \int_0^1 \frac{d^n}{dx^n} \frac{(x-x^2)^n}{n!} e^xdx = a_ne+b_n $$ where $a_n$ and $b_n$ are integers. We can integrate $I_n$ by parts $n$ times $$I_n = (-1)^n \int_0^1\frac{(x-x^2)^n}{n!} \frac{d^n}{dx^n}e^xdx\\ = (-1)^n \int_0^1\frac{(x-x^2)^n}{n!} e^xdx$$ thus given an upper bound for it $$|I_n| \leq \int_0^1\frac{[\text{max}(x-x^2)]^n}{n!} e^xdx=\frac{e-1}{n!4^n}.$$
Therefore $$ |I_n| = |a_ne+b_n| \leq \frac{e-1}{n!4^n}.$$ My question is: if we replace $a_ne+b_n$ for $a_nS_n+b_n$ where $$S_n = \sum_{k=0}^n \frac{1}{k!} $$ is the upper bound for $a_nS_n+b_n$ still is $(e-1)/n!4^n?$ If not, what is the new upper bound?
edit: If I remember right $e-S_n\leq\frac{1}{n!n}$