Q) How to find the value of:
$$\frac{1}{1-\sqrt{2}}+\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}+\dots+\frac{1}{\sqrt{101}-\sqrt{102}}$$
Ans) I am trying to find the value of this above series by rationalizing the numerator and denominator of each terms. Let $$S= \frac{1}{1-\sqrt{2}}+\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}+\dots+\frac{1}{\sqrt{101}-\sqrt{102}}$$ Therefore after rationalizing we can write this above summation as:
$$S = \left(\frac{1+\sqrt{2}}{-1}\right)+\left(\frac{\sqrt{2}+\sqrt{3}}{-1}\right)+\left(\frac{\sqrt{3}+\sqrt{4}}{-1}\right)+\dots+\left(\frac{\sqrt{101}+\sqrt{102}}{-1}\right)$$
Therefore the above summation is equal to
$$S = -\left(1+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)-\dots-\left(\sqrt{101}+\sqrt{102}\right)$$
Now after this step I can't proceed further because none of the terms are cancelling out. Please help me out with this summation.
For e.g., we can easily find the value of
$$S = \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\dots+\frac{1}{\sqrt{101}+\sqrt{102}}$$
by rationalizing the numerator and denominator of each terms. After rationalization the series will become
$$S = \left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\dots+\left(\sqrt{102}-\sqrt{101}\right)$$
Now finally after cancellation the value of $S$ will be $\sqrt{102}-1$.