We know that given a square matrix $A$, we can find its eigenvalues through the characteristic polynomial:
$$\text{det}(A - \lambda I) = \lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0$$
Suppose I wish to factorize this polynomial in term of the $n$ roots of this polynomial, which I denote as $\lambda_1, \ldots, \lambda_n$, which of the following answer is correct?
(a) $\lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0 = \prod_{i = 1}^n (\lambda - \lambda_i)$
(b) $\lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0 = \prod_{i = 1}^n (-1)^n(\lambda - \lambda_i)$
(c) $\lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0 = \prod_{i = 1}^n (\lambda_i - \lambda)$
(d) $\lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0 = \prod_{i = 1}^n (-1)^n (\lambda_i - \lambda)$
I am a bit confused because $(-1)^n$ may produce a leading coefficient of $-1$ whenever $n$ is odd.