2

Let $B = \begin{bmatrix} 1 && -2 \\ 3 && 5 \end{bmatrix} $

Find all the matrices $A$ that commute with $B$, i.e matrices $A$ that satisfy $AB = BA$.

My attempt:

Let $A = \begin{bmatrix} x && y \\ z && w \end{bmatrix} $

Then,

$ A B = \begin{bmatrix} x && y \\ z && w \end{bmatrix} \begin{bmatrix} 1 && -2 \\ 3 && 5 \end{bmatrix} = \begin{bmatrix} x + 3 y && - 2 x + 5 y \\ z + 3 w && -2 z + 5 w \end{bmatrix}$

and

$ BA = \begin{bmatrix} 1 && -2 \\ 3 && 5 \end{bmatrix} \begin{bmatrix} x && y \\ z && w \end{bmatrix} = \begin{bmatrix} x - 2 z && y - 2 w \\ 3 x + 5 z && 3 y + 5 w \end{bmatrix} $

Therefore, we now have the linear system

$ 3 y + 2 z = 0 $

$ - 2 x + 4 y + 2 w = 0 $

$ -3 x -4 z + 3 w = 0 $

The augmented matrix of this system is

$ \begin{bmatrix} 0 && 3 && 2 && 0 && | && 0 \\ -2 && 4 && 0 && 2 && | && 0 \\ -3 && 0 && -4 && 3 && | && 0 \end{bmatrix} $

The reduce-row echelon form of this augmented matrix is

$ \begin{bmatrix} 1 && 0 && \dfrac{4}{3} && -1 && | && 0 \\ 0 && 1 && \dfrac{2}{3} && 0 && | && 0 \\ 0 && 0 && 0 && 0 && | && 0 \end{bmatrix} $

Hence,

If we take $ z = t $, and $ w = s $ then

$ x = s - \dfrac{4}{3} t $

$ y = - \dfrac{2}{3} t $

Thus, the matrix $A$ is given by

$ A = t \begin{bmatrix} - \dfrac{4}{3} && - \dfrac{2}{3} \\ 1 && 0 \end{bmatrix} + s \begin{bmatrix} 1 && 0 \\ 0 && 1 \end{bmatrix} $

And my question is as follows:

Is this (brute force) method the only way to find the space of matrices $A$ that commute with the given $B$, or are there more clever ways ?

Hosam Hajeer
  • 21,978

0 Answers0