Let
$$ K=\left\{\frac{1}{n}\quad |\quad n\in \mathbb{N}\smallsetminus \{0\}\right\}\subset \mathbb{R}$$
and consider the sets
$\mathcal{A}=\left\{(a,b) \quad | \quad a,b\in\mathbb{R}, \quad a<b\right\},\quad\quad \mathcal{B}=\left\{(a,b)\cap (\mathbb{R}\smallsetminus K) \quad | \quad a,b\in \mathbb{R}, \quad a<b\right\}$
(a) Prove that $\mathcal{A}\cup \mathcal{B}$ is a basis for a topology $\tau$ on $\mathbb{R}$.
(b) Prove that the euclidean topology $\tau_e$ on $\mathbb{R}$ is not finer than $\tau$.
(c) Determinate the interior, the closure and the boundary of $K$ in $(\mathbb{R}, \tau)$.
(d) Establish whether $(\mathbb{R},\tau)$ is a separable topological space.
(e) Show that $(\mathbb{R},\tau)$ is not $T_3$.
I've found that:
(a) $\mathbb{R}$ is union of elements of $\mathcal{A}$ because $\mathbb{R}=\bigcup\limits_{a<b} (a,b)$, so, $\mathbb{R}$ is union of elements of $\mathcal{A}\cup \mathcal{B}$.
Now, if I choose $U,V\in \mathcal{A}\cup\mathcal{B}$, I have three cases:
- If $U=\emptyset$ or $V=\emptyset$, then $U\cap V=\emptyset$ that is union of elements of $\mathcal{A}$.
- If $U=\mathbb{R}$ or $V=\mathbb{R}$, then $U\cap V=V$ (or $U\cap V=U)$, so, I have that $U\cap V\in \mathcal{A}\cup\mathcal{B}$ in both cases.
- If $U\in \mathcal{A}$ and $V\in\mathcal{B}$, then
$$U\cap V=(a,b)\cap [(c,d)\cap (\mathbb{R}\smallsetminus K)]=(a,b)\cap(c,d)\cap (\mathbb{R}\smallsetminus K)=(\max\{a,c\}, \min\{b,d\})\cap (\mathbb{R}\smallsetminus K)$$ that is emptyset or it's an element of $\mathcal{B}$, so, even in this case we have $U\cap V\in \mathcal{A}\cup \mathcal{B}$.
So, $\mathcal{A}\cup\mathcal{B}$ is a basis for a topology on $\mathbb{R}$.
(b) Clearly, the euclidean topology is contained in $\tau$ because all the euclidean open sets are generated from the elements of the family $\mathcal{A}$. Moreover, I say that the two topology cannot coincide because in (e) it is requested to prove that $\tau$ is not $T_3$ and the euclidean topology is $T_3$ instead. It's not a great solution but I think it works. I would like to find an open set in $\tau$ that is not an euclidean open set, but I haven't succeeded yet.
(c) I've found that $K^\circ=\emptyset$ and $\overline{K}=\partial K=[0,+\infty)$. I'm not really sure of this answer.
(d) I think that it is because
$\mathcal{A}=\left\{(a,b) \quad | \quad a,b\in\mathbb{Q}, \quad a<b\right\}\cup \mathcal{B}=\left\{(a,b)\cap (\mathbb{R}\smallsetminus K) \quad | \quad a,b\in \mathbb{Q}, \quad a<b\right\}$ is a countable basis of $(\mathbb{R},\tau)$ and so $2$-countability implies separability.
(e) I built a counterexample choosing the point $x=\frac{2}{3}$ and the closed set $C=(-\infty,0]\cup K$, do they work?
Is it correct? Any suggestions for the unsure answers?