5

I have a function I want to approximate the growth of in a closed form:

$$\frac{\sum_{i=0}^{n-1}\sum_{j=0}^{n} |n-i-j|\binom{n+i-j}{i}\binom{n-i+j-1}{j}}{\binom{2n}{n}}$$

Without the absolute value term, this sort of resembles Vandermonde's identity, but I'm a bit stuck trying to resolve the function with this term. I've also tried expressing it as a polynomial

$$\left(\frac{1}{2\pi i}\right)^2\sum_{k=0}^{n-1}\sum_{j=0}^{n}|n-k-j|\oint_{|z|\ =\ 1}{\left(1 + z\right)^{n+k-j} \over z^{k+1}}dz\oint_{|z|\ =\ 1}{\left(1 + z\right)^{n+j-k-1} \over z^{n-k}}dz $$

which seems to lead no where. Can anyone suggest a way forward?

Marko Riedel
  • 61,317
Quantum
  • 69

1 Answers1

7

We seek a closed form of

$$\sum_{p=0}^{n-1} \sum_{q=0}^n |n-p-q| {n+p-q\choose p} {n-p+q-1\choose q}.$$

First part

We get for the argument to the absolute value being positive the contribution

$$\sum_{p=0}^{n-1} \sum_{q=0}^{n-1-p} (n-p-q) {n+p-q\choose p} {n-p+q-1\choose q}.$$

This is

$$\sum_{p=0}^{n-1} \sum_{q=0}^{n-1-p} (q+1) {n+p-(n-1-p-q)\choose p} {n-p+(n-1-p-q)-1\choose n-1-p-q} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^{n-1-p} (q+1) {2p+q+1\choose p} {2n-2p-q-2\choose n-p-q-1} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^p (q+1) {2(n-1-p)+q+1\choose n-1-p} {2n-2(n-1-p)-q-2\choose n-(n-1-p)-q-1} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^p (q+1) {2n-2p+q-1\choose n-1-p} {2p-q\choose p-q} \\ = [z^{n-1}] (1+z)^{2n-1} \sum_{p=0}^{n-1} z^p (1+z)^{-2p} \sum_{q=0}^p (q+1) (1+z)^q {2p-q\choose p-q} \\ = [z^{n-1}] (1+z)^{2n-1} \sum_{p=0}^{n-1} z^p (1+z)^{-2p} [w^p] (1+w)^{2p} \\ \times \sum_{q=0}^p (q+1) (1+z)^q w^q (1+w)^{-q}.$$

We may extend the inner sum to infinity due to the coefficient extractor in $w$, getting

$$[z^{n-1}] (1+z)^{2n-1} \sum_{p=0}^{n-1} z^p (1+z)^{-2p} [w^p] (1+w)^{2p} \frac{1}{(1-(1+z)w/(1+w))^2} \\ = [z^{n-1}] (1+z)^{2n-1} \sum_{p=0}^{n-1} z^p (1+z)^{-2p} [w^p] (1+w)^{2p+2} \frac{1}{(1+w-(1+z)w)^2} \\ = [z^{n-1}] (1+z)^{2n-1} \sum_{p\ge 0} z^p (1+z)^{-2p} [w^p] (1+w)^{2p+2} \frac{1}{(1-wz)^2}.$$

Here we have extended to infinity due to the extractor in $z.$ The contribution from $w$ is

$$\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{p+1}} (1+w)^{2p+2} \frac{1}{(1-wz)^2}.$$

Now put $w/(1+w)=v$ so that $w=v/(1-v)$ and $dw = 1/(1-v)^2 \; dv$ to get

$$\;\underset{v}{\mathrm{res}}\; \frac{1}{v^{p+1}} \frac{1}{(1-v)^{p+1}} \frac{1}{(1-vz/(1-v))^2} \frac{1}{(1-v)^2} \\ = \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{p+1}} \frac{1}{(1-v)^{p+1}} \frac{1}{(1-v-vz)^2}.$$

Next put $v = (1-\sqrt{1-4u})/2$ so that $v(1-v)=u$ and $dv = 1/\sqrt{1-4u} \; du$ to obtain

$$\;\underset{u}{\mathrm{res}}\; \frac{1}{u^{p+1}} \frac{1}{(1-(1+z)(1-\sqrt{1-4u})/2)^2} \frac{1}{\sqrt{1-4u}}.$$

Evaluate at $u=z/(1+z)^2$ to cancel the remaining sum (substitution rule), here we get

$$\sqrt{1-4u} = \sqrt{1-4z/(1+z)^2} = \frac{1}{1+z} \sqrt{(1+z)^2-4z} = \frac{1-z}{1+z}$$

and obtain

$$[z^{n-1}] (1+z)^{2n-1} \frac{1}{(1-(1+z)(1-(1-z)/(1+z))/2)^2} \frac{1+z}{1-z} \\ = [z^{n-1}] (1+z)^{2n-1} \frac{1}{(1-(1+z-(1-z))/2)^2} \frac{1+z}{1-z} \\ = [z^{n-1}] (1+z)^{2n} \frac{1}{(1-z)^3}.$$

Second part

We get for the argument to the absolute value being negative the contribution

$$- \sum_{p=0}^{n-1} \sum_{q=n-p}^n (n-p-q) {n+p-q\choose p} {n-p+q-1\choose q} \\ = - \sum_{p=0}^{n-1} \sum_{q=0}^p (n-p-(n-q)) {n+p-(n-q)\choose p} {n-p+n-q-1\choose n-q} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^p (p-q) {p+q\choose p} {2n-p-q-1\choose n-q} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^p q {2p-q\choose p} {2n-2p+q-1\choose n-p+q} \\ = \sum_{p=0}^{n-1} \sum_{q=0}^p q {2p-q\choose p-q} {2n-2p+q-1\choose n-1-p}.$$

We have the first part with $q$ replaced by $q+1$ and adjust the infinite series accordingly, getting:

$$[z^{n-1}] (1+z)^{2n-1} \sum_{p=0}^{n-1} z^p (1+z)^{-2p} [w^p] (1+w)^{2p} \frac{(1+z)w/(1+w)}{(1-(1+z)w/(1+w))^2} \\ = [z^{n-1}] (1+z)^{2n} \sum_{p\ge 0} z^p (1+z)^{-2p} [w^{p-1}] (1+w)^{2p+1} \frac{1}{(1-wz)^2}.$$

We extended $p$ to infinity due to the extractor in $z.$ Unfortunately this isn't quite a repeat so we need to do the residues one more time. We have

$$\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{p}} (1+w)^{2p+1} \frac{1}{(1-wz)^2}.$$

Now again put $w/(1+w)=v$ so that $w=v/(1-v)$ and $dw = 1/(1-v)^2 \; dv$ to get

$$\;\underset{v}{\mathrm{res}}\; \frac{1}{v^{p}} \frac{1}{(1-v)^{p+1}} \frac{1}{(1-vz/(1-v))^2} \frac{1}{(1-v)^2} \\ = \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{p}} \frac{1}{(1-v)^{p}} \frac{1}{(1-v-vz)^2} \frac{1}{1-v}.$$

Next put $v = (1-\sqrt{1-4u})/2$ so that $v(1-v)=u$ and $dv = 1/\sqrt{1-4u} \; du$ to obtain

$$\;\underset{u}{\mathrm{res}}\; \frac{1}{u^{p}} \frac{1}{(1-(1+z)(1-\sqrt{1-4u})/2)^2} \frac{1}{\sqrt{1-4u}} \frac{1-\sqrt{1-4u}}{2u}.$$

Evaluate at $u=z/(1+z)^2$ to cancel the remaining sum (substitution rule, same as before),

$$[z^{n-1}] (1+z)^{2n} \frac{1}{(1-(1+z)(1-(1-z)/(1+z))/2)^2} \frac{1+z}{1-z} \frac{1-(1-z)/(1+z)}{2} \\ = [z^{n-1}] (1+z)^{2n} \frac{1}{(1-(1+z-(1-z))/2)^2} \frac{z}{1-z} \\ = [z^{n-1}] (1+z)^{2n} \frac{z}{(1-z)^3} = [z^{n-2}] (1+z)^{2n} \frac{1}{(1-z)^3}.$$

Conclusion

It remains to add up the two pieces. We have

$$[z^{n-1}] (1+z)^{2n} \frac{1}{(1-z)^3} + [z^{n-1}] (1+z)^{2n} \frac{z}{(1-z)^3} \\ = [z^{n-1}] (1+z)^{2n+1} \frac{1}{(1-z)^3}.$$

This is

$$S = \;\underset{z}{\mathrm{res}}\; \frac{1}{z^n} (1+z)^{2n+1} \frac{1}{(1-z)^3}.$$

Residues sum to zero so we may evaluate using minus the residues at $z=1$ and at infinity. We require for the former (flip sign one more time)

$$\frac{1}{2} \left.\left[ \frac{1}{z^n} (1+z)^{2n+1} \right]''\right|_{z=1} \\ = \frac{1}{2} \left.\left[ - \frac{n}{z^{n+1}} (1+z)^{2n+1} + \frac{1}{z^{n}} (2n+1) (1+z)^{2n} \right]'\right|_{z=1} \\ = \frac{1}{2} \left[ n(n+1) 2^{2n+1} - n(2n+1) 2^{2n} - n (2n+1) 2^{2n} + (2n+1)(2n) 2^{2n-1} \right] \\ = \frac{1}{2} n 4^n.$$

We get from the residue at infinity with the sign flipped

$$\;\underset{z}{\mathrm{res}}\; \frac{1}{z^2} z^n (1+1/z)^{2n+1} \frac{1}{(1-1/z)^3} \\ = \;\underset{z}{\mathrm{res}}\; \frac{1}{z^2} z^n (1+z)^{2n+1} \frac{1}{z^{2n+1}} \frac{z^3}{(z-1)^3} = - \;\underset{z}{\mathrm{res}}\; \frac{1}{z^n} (1+z)^{2n+1} \frac{1}{(1-z)^3} = - S.$$

We have shown that $S= \frac{1}{2} n 4^n - S$ or alternatively

$$S= n 4^{n-1}.$$

Asymptotics

OP asks to scale $S$ by the central binomial coefficient. This will produce

$${2n\choose n}^{-1} n 4^{n-1} \sim \frac{\sqrt{\pi n}}{4^n} n 4^{n-1} = \frac{1}{4} \sqrt{\pi} n^{3/2}.$$

Acknowledgement

I would like to dedicate this computation to G. Egorychev who sadly is no longer with us as of December 2023.

Marko Riedel
  • 61,317