$X$ is a normed linear space.
$f_{0},f_{1},f_{2}...f_{n}$ are bounded linear functional.
$\bigcap_{k=1}^{n}ker(f_{k})\subset ker(f_{0})$
Proof $f_{0}\in span(f_{1},f_{2}...f_{n})$
How can I solve it?
$X$ is a normed linear space.
$f_{0},f_{1},f_{2}...f_{n}$ are bounded linear functional.
$\bigcap_{k=1}^{n}ker(f_{k})\subset ker(f_{0})$
Proof $f_{0}\in span(f_{1},f_{2}...f_{n})$
How can I solve it?