Given a sequence $a_n : \mathbb N \to \mathbb R$ that converges to $L \in \mathbb R$, is it true that $$ \lim_{n \to \infty} a_n \to L \implies \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_k \to L $$ Here is my attempt at a proof (and I would appreciate any feedback on whether it is correct or not).
We are given that, for every $\varepsilon_1 > 0$, there exists a $N_1 \in \mathbb N$ such that whenever $n \geq N_1$, $|a_n - L| < \varepsilon_1$. We then want to show that, for every $\varepsilon_2 > 0$, there exists a $N_2 \in \mathbb N$ such that whenever $n \geq N_2$, $\left|\frac{1}{n} \sum_{k=0}^{n-1} a_k - L\right| < \varepsilon_2$.
Fix any $\varepsilon_2 > 0$. Then, choose $\varepsilon_1 = \varepsilon_2$ and, after picking the corresponding $N_1$, choose $N_2 \geq N_1$. Then, $$ \begin{align} \left|\frac{1}{n} \sum_{k=0}^{n-1} a_k - L\right| &\leq \frac{1}{n} \sum_{k=0}^{n-1} \left|a_k - L\right| \\ &< \frac{1}{n} \sum_{k=0}^{n-1} \varepsilon_1 \\ &= \frac{1}{n} \sum_{k=0}^{n-1} \varepsilon_2 \\ &= \varepsilon_2 \cdot \frac{1}{n} \cdot \sum_{k=0}^{n-1} 1 \\ &= \varepsilon_2 \cdot \frac{1}{n} \cdot n \\ &= \varepsilon_2 \end{align} $$