Given that $$\frac{\varpi}{\text{sl}(\varpi z)}=\sum_{n,k\in\mathbb{Z}}\frac{(-1)^{n+k}}{z+n+ik}$$
It can be deduced that, for $-1<\text{Im}(z)<1$:
$$\frac{1}{\text{sl}(\varpi z)}=\frac{\pi}{\varpi}\left[\frac{1}{\sin \pi z}-4\sum_{n=0}^{\infty} \frac{\sin((2n+1)\pi z)}{e^{\pi(2n+1)}+1}\right]$$
The proof is here
$$\sum_{n,k\in\mathbb{Z}}\frac{(-1)^{n+k}}{z+n+ik}=\sum_{k\in\mathbb{Z}}(-1)^k \sum_{n\in\mathbb{Z}}\frac{(-1)^{n}}{z+n+ik}$$
Note $\frac{\pi}{sin(\pi z)}=\sum_{n\in\mathbb{Z}}\frac{(-1)^n}{z+n}$
$$\implies \sum_{k\in\mathbb{Z}}(-1)^k \frac{\pi}{\sin(\pi (z+ik))}=\frac{\pi}{\sin(\pi z)}+\sum_{k\leq -1}\frac{2 \pi i (-1)^k}{e^{i\pi (z+ik)}-e^{-i\pi (z+ik)}} +\sum_{k\geq 1} \frac{2\pi i (-1)^k}{e^{i\pi (z+ik)}-e^{-i\pi (z+ik)}} $$
$$=\frac{\pi}{\sin(\pi z)}+\sum_{k\geq 1}\frac{2 \pi i (-1)^k}{e^{i\pi (z-ik)}-e^{-i\pi (z-ik)}} +\sum_{k\geq 1} \frac{2\pi i (-1)^k}{e^{i\pi (z+ik)}-e^{-i\pi (z+ik)}} $$ $$=\frac{\pi}{\sin(\pi z)}+\sum_{k\geq 1}\frac{2 \pi i (-1)^ke^{-\pi(k+iz)}}{1-e^{-2\pi (k+iz )}} +\sum_{k\geq 1} \frac{2\pi i (-1)^{k+1} e^{-\pi (k-iz)}}{1-e^{-2\pi (k-iz)}}$$
For $-1<\text{Im}(z)<1$, the fractions can be written as geometric series as follows: $$=\frac{\pi}{\sin(\pi z)}+\sum_{k\geq 1}2\pi i(-1)^k e^{-\pi (k+iz)}\sum_{j\geq 0}e^{-2\pi j(k+iz)}-\sum_{k\geq 1}2\pi i(-1)^k e^{-\pi (k-iz)}\sum_{j\geq 0}e^{-2\pi j(k-iz)}$$ $$=\frac{\pi}{\sin(\pi z)}+\sum_{j\geq 0}2\pi i e^{-2\pi i j z}e^{-i\pi z}\sum_{k\geq 1}(-1)^k e^{-\pi k (2j+1)}-\sum_{j\geq 0}2\pi i e^{2\pi i j z}e^{i\pi z}\sum_{k\geq 1}(-1)^k e^{-\pi k (2j+1)}$$ $$=\frac{\pi}{\sin(\pi z)}+\sum_{j\geq 0}2\pi i \left[e^{-\pi i z(2j+1)}\Big(\frac{-e^{-\pi(2j+1)}}{1+e^{-\pi(2j+1)}}\Big)-e^{\pi i z(2j+1)}\Big(\frac{-e^{-\pi(2j+1)}}{1+e^{-\pi(2j+1)}}\Big)\right]$$
$$=\frac{\pi}{\sin(\pi z)}+\sum_{j\geq 0}(2i)^2 \pi \left[\frac{e^{\pi i z(2j+1)}-e^{-\pi i z(2j+1)}}{2i} \frac{1}{1+e^{\pi (2j+1)}}\right]$$ $$=\frac{\pi}{\sin(\pi z)}-4\pi \sum_{j\geq 0} \left[\frac{\sin((2j+1)\pi z)}{1+e^{\pi (2j+1)}}\right]$$
$$\implies \sum_{n,k\in\mathbb{Z}}\frac{(-1)^{n+k}}{z+n+ik}=\frac{\pi}{\sin(\pi z)}-4\pi \sum_{j\geq 0} \left[\frac{\sin((2j+1)\pi z)}{1+e^{\pi (2j+1)}}\right]$$
This finishes the proof
However, I wasn't able to show that $$\frac{\varpi}{\text{sl}(\varpi z)}=\sum_{n,k\in\mathbb{Z}}\frac{(-1)^{n+k}}{z+n+ik}$$
sl is the lemniscate analog of sine, and the pole expansion looks like the 2D version of $1/\sin$
I am trying to use Mittag Leffler expansion however I ran into some difficulties:
(1). I do not know where the zeros of sl are on $\mathbb{C}$. Hence, I do not know where the residues are at, nor the value of residues
(2). Apparently, sl is doubly periodic with the periods $\{(1+i)\varpi,(1-i)\varpi\}$, but I also am unable to prove this fact yet. For this, I already have an idea of using the argument sum formulas (this post).But again, I don't know the values of sl$(\varpi(1\pm i))$ and cl$(\varpi(1\pm i))$, so this idea os pended for now
Any help is appreciated