Let’s integrate the expression you provide for $\mu_n$ by parts to reduce the dependence on $n$:
\begin{eqnarray*}
\mu_n
&=&
\int_{-\infty}^\infty n\Phi^{n-1}(1-\Phi)\mathrm dx
\\
&=&
\int_{-\infty}^\infty n\Phi^{n-1}\Phi'\frac{1-\Phi}{\Phi'}\mathrm dx
\\
&=&
\left[\Phi^n\frac{1-\Phi}{\Phi'}
\right]_{-\infty}^\infty-\int_{-\infty}^\infty\Phi^n\left(\frac{1-\Phi}{\Phi'}\right)'\mathrm dx
\\
&=&
\int_{-\infty}^\infty\Phi^n\left(1+\frac{\Phi''(1-\Phi)}{\Phi'^2}\right)\mathrm dx\;,\end{eqnarray*}
where the boundary term vanishes for a normal distribution. Since this expression can be extended to real $n$, we can differentiate it with respect to $n$, yielding
$$
\frac{\partial\mu_n}{\partial n}=\int_{-\infty}^\infty\Phi^n\log\Phi\left(1+\frac{\Phi''(1-\Phi)}{\Phi'^2}\right)\mathrm dx\;.
$$
So far we only assumed a normal distribution in assuming $\Phi'\ne0$ and in concluding that the boundary term vanishes, so this result holds for all distributions that fulfil those conditions (possibly with different limits on the integral). It also holds if the boundary term is non-zero but doesn’t depend on $n$. For instance, for an exponential distribution, with
$$
\Phi=1-\mathrm e^{-\lambda x}\;,\\
\Phi'=\lambda\mathrm e^{-\lambda x}\;,\\
\Phi''=-\lambda^2\mathrm e^{-\lambda x}\;,
$$
the boundary term is $1$, independent of $n$, and we have
\begin{eqnarray*}
1+\frac{\Phi''(1-\Phi)}{\Phi'^2}
&=&
1+\frac{-\lambda^2\mathrm e^{-\lambda x}\left(1-\left(1-\mathrm e^{-\lambda x}\right)\right)}{\left(\lambda\mathrm e^{-\lambda x}\right)^2}
\\
&=&
0\;,
\end{eqnarray*}
confirming that $\mu_n$ is constant for this type of distribution.
Since $\Phi^n\log\Phi$ is negative and the remaining factor doesn’t depend on $n$, $\mu_n$ is strictly increasing or strictly decreasing if this factor is everywhere negative or everywhere positive, respectively. If the factor changes sign, then $\frac{\partial\mu_n}{\partial n}$ may change sign as $\Phi^n$ gets increasingly concentrated near $\Phi=1$ for increasing $n$.
For a uniform distribution, the boundary term vanishes, and we have $\Phi''=0$, so $\mu_n$ is strictly decreasing, as expected.
For the standard normal distribution, we have
\begin{eqnarray*}
\Phi
&=&\frac12\left(1+\operatorname{erf}\left(\frac x{\sqrt2}\right)\right)\;,\\
\Phi'
&=&
\frac1{\sqrt{2\pi}}\exp\left(-\frac{x^2}2\right)\;,\\
\Phi''
&=&
-\frac1{\sqrt{2\pi}}x\exp\left(-\frac{x^2}2\right)\;,
\end{eqnarray*}
so
\begin{eqnarray*}
1+\frac{\Phi''(1-\Phi)}{\Phi'^2}
&=&
1-\sqrt{\frac\pi2}x\exp\left(\frac{x^2}2\right)\left(1-\operatorname{erf}\left(\frac x{\sqrt2}\right)\right)\;.
\end{eqnarray*}
With
\begin{eqnarray*}
\sqrt{\frac\pi2}\left(1-\operatorname{erf}\left(\frac x{\sqrt2}\right)\right)
&=&
\sqrt2\int_{x/\sqrt2}^\infty\exp\left(-t^2\right)\mathrm dt
\\
&=&
\int_x^\infty\exp\left(-\frac{u^2}2\right)\mathrm du
\\
&=&
\int_x^\infty\left(-\frac1u\right)\left(-u\exp\left(-\frac{u^2}2\right)\right)\mathrm du
\\
&=&
\left[-\frac1u\exp\left(-\frac{u^2}2\right)\right]_x^\infty-\int_x^\infty\frac1{u^2}\exp\left(-\frac{u^2}2\right)\mathrm du
\\
&=&
\frac1x\exp\left(-\frac{x^2}2\right)-\int_x^\infty\frac1{u^2}\exp\left(-\frac{u^2}2\right)\mathrm du\;,
\end{eqnarray*}
this becomes
\begin{eqnarray*}
1+\frac{\Phi''(1-\Phi)}{\Phi'^2}
&=&
1-x\exp\left(\frac{x^2}2\right)\left(\frac1x\exp\left(-\frac{x^2}2\right)-\int_x^\infty\frac1{u^2}\exp\left(-\frac{u^2}2\right)\mathrm du\right)
\\
&=&
x\exp\left(\frac{x^2}2\right)\int_x^\infty\frac1{u^2}\exp\left(-\frac{u^2}2\right)\mathrm du\
\\
&\gt&0\;,
\end{eqnarray*}
so indeed $\mu_n$ is strictly decreasing for the standard normal distribution.