For any $\;x\in\Bbb R\;$ it results that
$\begin{align}\arctan\left[\tanh\left(\dfrac x2\right)\right]&=\arctan\left(\dfrac{e^{\frac x2}-e^{-\frac x2}}{e^{\frac x2}+e^{-\frac x2}}\right)=\\[3pt]&\!\!\!\!\!\!\!\!\!\!\!\!\!\!=\arctan\left(\dfrac{e^x-1}{e^x+1}\right)=\\[3pt]&\!\!\!\!\!\!\!\!\!\!\!\!\!\!=\arctan\left[\dfrac{\tan(\arctan e^x)-\tan\left(\frac\pi4\right)}{1+\tan(\arctan e^x)\!\cdot\!\tan\left(\frac\pi4\right)}\right]=\\[3pt]&\!\!\!\!\!\!\!\!\!\!\!\!\!\!=\arctan\left[\tan\left(\arctan\left(e^x\right)-\dfrac\pi4\right)\right]=\\[3pt]&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\overset{\color{blue}{(*)}}{=}\arctan\left(e^x\right)-\dfrac\pi4\;.\end{align}$
The last equality $\,(*)\,$ is a conseguence of the fact that
$\arctan\left(e^x\right)\!-\!\dfrac\pi4\in\left(-\dfrac\pi4,\dfrac\pi4\right)\subseteq\left(-\dfrac\pi2,\dfrac\pi2\right)\quad\forall\,x\in\Bbb R$
and the function tangent is invertible on $\left(-\dfrac\pi2,\dfrac\pi2\right).$
Since $\;\arctan\left[\tanh\left(\dfrac x2\right)\right]\!=\!\arctan\left(e^x\right)\!-\!\dfrac\pi4\;$ for any $\,x\in\Bbb R$
it follows that OP’s solution is equal to WolframAlpha’s one.