Lemma $\ a = b\,(b^2\!-\!1),\ \color{#0a0}{b^4 \equiv -1}\!\pmod{\!p}\,\Rightarrow\, o_p(a) \!=\! 16k,\,$ if $\,\color{#0a0}b = \color{#c00}2^k,\ k = 2^{n-2}$
Proof $\ \ \ \color{#c00}{a^2} = b^2(\color{#0a0}{b^4\!+\!1}-2b^2) \equiv -2\color{#0a0}{b^4} = \color{#c00}2,\,$ so by $\:\!\rm\color{#0af}{OT}$ = Order Test
$a^{8k}\!\equiv\color{#c00}a^{\color{#c00}2(4k)}\!\equiv\! (\color{#c00}2^k)^4\! \equiv\color{#0a0}{b^4 \equiv-1}$ $\,\underset{\rm\color{#0af}{OT}}\Rightarrow o_p(a)\!=\!16k\,$ (by $\,a^{16k/q}\!\color{#0a0}{\not\equiv\! 1}\:\forall$ prime $\:\!q\!\mid\! 16k\!=\! 16\cdot 2^{n-2})$
Or $\ \color{#0a0}b\equiv\color{#c00}a^{\color{#c00}2k}\,$ so $\,\color{#0a0}{o(b)\!=\!8}\!=\! o(a^{2k})\,$ $\Rightarrow o(a)= \color{#0a0}8(2k)\,$ by Rad OT $ $ (by prime $\,q\mid 2k\Rightarrow 2\mid\color{#0a0}8)$
i.e. $\ \bbox[5px,border:1px solid #c00]{o(\sqrt[\large 2k]b) = 2k\, o(b)}\, $ when all primes $\,q\mid 2k\Rightarrow q\mid o(b)$