Your integral is equivalent to
$$ \int_0^{\infty} \frac{\arctan t}{\sqrt{t} \,(1+t^2)} \, dt $$
by substituting $x=\arctan t$. To evaluate this, we recall a well known integral from complex analysis:
$$ \int_0^{\infty} \frac{t^{s-1}}{1+t} \, dt = \frac{\pi}{\sin(\pi s)}, \hspace{0.5cm} 0<\text{re}(s)<1 $$
Substituting $x^2t^2$ for $t$, where $x$ is some positive real number, and replacing $s$ with $\frac{s}{2}$ gives
$$ \frac{\pi x^{-s}}{2\sin(\frac{\pi s}{2})} = \int_0^{\infty} \frac{t^{s-1}}{1+(xt)^2} \, dt, \hspace{0.5cm} 0<s<2, \; x>0 $$
Subtracting two such expressions gives
$$ \frac{\pi (1-x^{2-s})}{2\sin(\frac{\pi s}{2})} = \int_0^{\infty} t^{s-1} \left(\frac{1}{1+t^2} - \frac{x^2}{1+(xt)^2} \right) dt = (1-x^2) \int_0^{\infty} \frac{t^{s-1}}{(1+t^2)(1+(xt)^2)} \, dt $$
and therefore
$$ \frac{\pi}{2\sin(\frac{\pi s}{2})} \frac{1-x^{2-s}}{1-x^2} = \int_0^{\infty} \frac{t^{s-1}}{(1+t^2)(1+(xt)^2)} \, dt, \hspace{0.5cm} 0<s<2, \; x>0 $$
We now integrate both sides with respect to $x$ from $0$ to $1$ and apply Fubini's theorem on the right, which is justified by absolute convergence. This gives
$$ \frac{\pi}{2\sin(\frac{\pi s}{2})} \int_0^1 \frac{1-x^{2-s}}{1-x^2} \, dx = \int_0^{\infty} \frac{t^{s-1}}{1+t^2} \int_0^1 \frac{dx}{1+(xt)^2} \, dt = \int_0^{\infty} \frac{t^{s-2} \arctan t}{1+t^2} \, dt $$
Finally setting $s=\frac{3}{2}$ we obtain the integral you're looking for on the right and
$$ \frac{\pi}{\sqrt{2}} \int_0^1 \frac{1-\sqrt{x}}{1-x^2} \, dx = \frac{\pi}{\sqrt{2}} \int_0^1 \frac{1-t}{1-t^4} \, 2tdt = \frac{\pi}{\sqrt{2}} \int_0^1 \frac{2t}{(1+t)(1+t^2)} \, dt \\ = \frac{\pi}{\sqrt{2}} \int_0^1 \left(\frac{1+t}{1+t^2}-\frac{1}{1+t} \right) dt $$
on the left. Can you finish things off?
with G the MeijerG function.
– gpmath Dec 30 '23 at 10:03