Alternative approach
For $~n \in \Bbb{Z_{\geq 3}},~$ let:
$f(n)~$ denote the probability that the 1st head is on coin flip $~n.~$
Then $~f(n) = 2^{-n}.$
$g(n)~$ denote the probability that none of the bins are empty, given that the 1st head occurred on coin flip $~n.$
Then, by Inclusion Exclusion, which is also discussed here, you have that
$\displaystyle g(n) = 1 - 3\left[ ~\frac{2^n}{3^n} ~\right] + 3\left[ ~\frac{1^n}{3^n} ~\right] = 1 - 3\left( ~\frac{2}{3} ~\right)^n + 3\left( ~\frac{1}{3} ~\right)^n.$
So, the overall computation is
$$\sum_{n=3}^\infty [ ~f(n) \times g(n) ~] $$
$$= \sum_{n=3}^\infty \left\{
~2^{-n} \times \left[ ~1 - 3\left( ~\frac{2}{3} ~\right)^n + 3\left( ~\frac{1}{3} ~\right)^n ~\right] ~\right\} $$
$$=
\sum_{n=3}^\infty \left[ \left( ~\frac{1}{2} ~\right)^n - 3\left( ~\frac{1}{3} ~\right)^n + 3\left( ~\frac{1}{6} ~\right)^n ~\right]. \tag1 $$
Note that for $~|x| < 1,~$ you have that
$$\sum_{n=3}^\infty x^n = x^3 \sum_{n=0}^\infty x^n = x^3 \times \left[ ~\frac{1}{1 - x} ~\right]. \tag2 $$
So, (1) above can be evaluated by using the formula in (2) above. Therefore, the probability is
$$\left[ ~\frac{1}{8} \times 2 ~\right]
- 3 \left[ ~\frac{1}{27} \times \frac{3}{2} ~\right]
+ 3 \left[ ~\frac{1}{216} \times \frac{6}{5} ~\right]$$
$$= \left[ ~\frac{1}{4} ~\right]
- \left[ ~\frac{1}{6} ~\right]
+ \left[ ~\frac{1}{60} ~\right]$$
$$= \frac{15 - 10 + 1}{60} = \frac{6}{60} = \frac{1}{10}.$$