According to this document, quaternion powers can be defined.
Using the notation $\mathbf q = s + \mathbf v$ where $s\in\mathbb R$ and $\mathbf v\in\operatorname{span}\{i,j,k\}$ we define
$$
\exp(\mathbf q) = \exp(s) \left( \cos|\mathbf v| + \frac{\mathbf v}{|\mathbf v|}\sin|\mathbf v| \right) \\
\ln(\mathbf q) = \ln|\mathbf q| + \frac{\mathbf v}{|\mathbf v|} \arccos\frac{s}{|\mathbf q|} \\
$$
and powers by
$$
\mathbf q^{\mathbf p} = \exp(\ln(\mathbf q) \mathbf p).
$$
For $\mathbf q=i$ we get
$$
\ln(\mathbf q)
= \ln|\mathbf q| + \frac{\mathbf v}{|\mathbf v|} \arccos\frac{s}{|\mathbf q|}
= \ln|i| + \frac{i}{|i|} \arccos\frac{0}{|i|}
= i\frac{\pi}{2}
$$
which is not surprising since we know from the complex numbers that $e^{i\frac{\pi}{2}} = i.$
Thus, with $\mathbf p=j,$ we get
$$
\ln(\mathbf q)\mathbf p = i\frac{\pi}{2} j = \frac{\pi}{2} k
$$
which then gives us
$$
\mathbf q^{\mathbf p}
= \exp(\ln(\mathbf q)\mathbf p)
= \exp(\frac{\pi}{2}k)
= \exp(0) \left( \cos|\frac{\pi}{2}k| + \frac{\frac{\pi}{2}k}{|\frac{\pi}{2}k|} \sin|\frac{\pi}{2}k| \right)
= 1 \cdot (0 + k\cdot 1)
= k.
$$
So your calculation is correct, but I can unfortunately not give you any interpretation of this.