1

I know and I can prove that, given $f:\Omega \rightarrow \mathbb{R}$ in $L^1_{|\mu|}(\Omega)$, then $$\left|\int_{\Omega}f\,d\mu\right|\leq \int_{\Omega}|f|d|\mu|$$ where $|\mu|$ is the total variation measure of $\mu$. But the same holds even if $f:\Omega \rightarrow \mathbb{R}$ and $\mu$ is a vector-valued Radon measure in $\mathbb{R}^d$ and $\int_{\Omega} f\,d\mu=(\int_\Omega fd\mu_1,...,\int_\Omega f d\mu_d)$. How can I prove it?

0 Answers0