Let us define
$$ t = \frac{1}{1+x^{12}}$$
Then
$$ x = (\frac{1-t}{t})^{\frac{1}{12}}$$
i.e.
$$ x^6 = (\frac{1-t}{t})^{\frac{1}{2}}$$
This implies that
$$ dx = \frac{-1}{12} \cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt$$
After changing the bounds of integration and swapping the upper and lower limits for a negative sign, we get:
$$\ I = \int_0^1 t \cdot ((\frac{1-t}{t})^{\frac{1}{2}} +1) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt$$
Splitting the integral into two, we get:
$$\ I = \int_0^1 t \cdot ((\frac{1-t}{t})^{\frac{1}{2}}) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt + \int_0^1 t \cdot (1) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt$$
Let
$$\ I_1 = \int_0^1 t \cdot ((\frac{1-t}{t})^{\frac{1}{2}}) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt $$
and
$$\ I_2 = \int_0^1 t \cdot (1) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt$$
For $\ I_1$, we get:
$$\ I_1 = \int_0^1 t \cdot ((\frac{1-t}{t})^{\frac{1}{2}}) \cdot \frac{1}{12}\cdot (1-t)^{\frac{-11}{12}} \cdot t^{\frac{-13}{12}}dt $$
$$ = \frac{1}{12} \cdot \int_0^1 t^{\frac{-7}{12}} \cdot (1-t)^{\frac{-5}{12}}dt $$
$$\ I_1 = \frac{1}{12} \cdot \beta(\frac{5}{12}, \frac{7}{12}) = \frac{1}{12} \cdot \Gamma(\frac{5}{12})\cdot \Gamma(\frac{7}{12}) = \frac{1}{12} \cdot \frac{\pi}{\sin(\frac{5\pi}{12})}$$
Where $\beta(x,y)$ is the (Eulerian) Beta function, which is defined as:
$$\beta(m,n) = \int_0^1 t^{m-1} \cdot (1-t)^{n-1} dt$$
We used some special properties of this function, which are:
$$\beta(x,y) = \frac{\Gamma(x)\cdot \Gamma(y)}{\Gamma(x+y)}$$
And Euler's Reflection formula, which states that
$$\Gamma(z)\cdot \Gamma(1-z) = \frac{\pi}{sin(\pi z)}$$
Similarly, $I_2$ evaluates to:
$$\ I_2 = \frac{1}{12} \cdot \beta(\frac{1}{12}, \frac{11}{12}) = \frac{1}{12} \cdot \frac{\pi}{\sin(\frac{\pi}{12})}$$
Adding $I_1$ and $I_2$, we have:
$$\ I = I_1 + I_2 = \frac{\pi}{12} \cdot (\csc(\frac{5\pi}{12}) + \csc(\frac{\pi}{12}))$$
$$= \frac{\pi}{12} \cdot(2\sqrt2) \cdot (\frac{1}{\sqrt3-1}+\frac{1}{\sqrt3+1})$$
And we finally get our result:
$$\ I = \frac{\pi}{\sqrt6}$$
In fact, you can use this technique to prove that for $m > n+1$ and $n >0$, we have:
$$\ I(m,n) = \int_0^{\infty} \frac{x^n}{1+x^m} dx = \frac{\pi}{m} \cdot \csc(\frac{\pi(n+1)}{m})$$