0

A non-zero matrix $A$ is said to be nilpotent for some positive integer $k\geq2$. If $A$ is nilpotent then is $I+A$ invertible?? Where $I$ is the identity matrix.

RedRose
  • 353
  • 1
  • 4
  • 14
kushala
  • 11

2 Answers2

1

Short answer: yes.

Long answer:

If $A^k=0$, consider the product $$A^{2n+1}+I=(A+I)(A^{2n}-A^{2n-1}+\cdots+I)$$ For a sufficiently large integer $n$.

Ben Grossmann
  • 225,327
0

Hint: Suppose $\,A^k=0\;$ , then:

$$(A-I)(A^{k-1}+A^{k-2}+...+A+I)=A^K-1\ldots$$

...but you have $\,A\color{red}+I\;$ , so what to do...? :)

DonAntonio
  • 211,718
  • 17
  • 136
  • 287