How do I evaluate this limit?
$$\lim_{n\to\infty}\frac{\sum_{i=0}^{n+3}\frac{1}{i+1}}{\sum_{i=0}^{n+7}\frac{1}{2i+1}}$$
We know that $$\sum_{i=1}^{n}\frac{1}{i}\approx\ln(n)+\gamma$$
where the value of $\gamma$ is $0.577$
Similarly we can also say that $$\sum_{i=0}^{n}\frac{1}{i+1}=\ln(n+1)+\gamma$$
Therefore we can again say that $$\sum_{i=0}^{n+3}\frac{1}{i+1}=\ln(n+4)+\gamma$$
Again we can say that $$\sum_{i=0}^{n+7}\frac{1}{2i+1}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{2n+15}$$
But after this step I can't find the exact value of the limit.
Wolfram Alpha is giving the result as $2$.