I need to understand is the set $\{x\in \ell_1 :\sum_{n=1}^{\infty} \frac{\lvert x_n \rvert}{\sin\left(\frac{1}{n}\right)} \leq 1 \}$ precompact in $\ell_1$.
I tryed to use criterion: set in $\ell_1$ is precompact if and only if it is bounded and $\forall \varepsilon > 0 \exists N \in \mathbb{N}:\forall x \sum_{n=N+1}^{\infty} \lvert x_n \rvert < \varepsilon$.
Boundness is obvious.
I had idea to use $\lvert x_n \rvert \leq \sin\left(\frac{1}{n}\right) $ but i think it is useless because $ \sum_{n=1}^{\infty}\sin\left(\frac{1}{n}\right)$ diverges.
Is it precompact or not?